
A stochastic L-BFGS approach for full waveform inversion 
Gabriel Fabien-Ouellet*, Erwan Gloaguen, Bernard Giroux, INRS 
 
Summary 
 
Speeding-up convergence rates and reducing the 
computational burden of Full Waveform Inversion (FWI) is 
increasingly important as we move toward large-scale 3D 
multi-parameter inversion. To this end, second-order 
optimization algorithms like L-BFGS or the truncated 
Newton method allow a much faster convergence rate at 
minimal computational costs. In the same fashion, 
stochastic source subsampling approaches have been shown 
to reduce the computational cost of FWI. In this study, we 
propose to combine these two strategies and present how 
the L-BFGS algorithm can be used along with the 
stochastic source subsampling strategy, or what we call the 
stochastic L-BFGS algorithm.  
 
Introduction 
 
The advances in high performance computing over the last 
decades have allowed the application of FWI to larger and 
larger 3D problems, and to more complex physics, going 
from acoustic to the more complex anisotropic 
(visco)elastic wave propagation (Fabien-Ouellet et al., 
2017, Komatitsch et al., 2002). Still, large-scale multi-
parameter FWI remains computationally challenging, 
preventing its widespread adoption. Hence, reducing the 
computing times remains an important issue to broaden the 
applicability of FWI. 
 
Many strategies have been proposed to decrease the 
computational burden of FWI.  One such strategy is the use 
of second-order descent algorithms, like the Newton 
method, which has been shown to dramatically improve the 
convergence rate of FWI and its resolution (Pratt et al., 
1998). More precisely, inexact Newton methods like the 
limited memory Broyden-Fletcher-Goldfarb-Shannol (L-
BFGS) or the truncated Newton method retain the better 
convergence rates of the full Newton method, without its 
prohibitively high computing cost. In effect, inexact 
Newton methods speed-up convergence at minimal costs, 
thus reducing the required number of iterations and the 
overall computing time of FWI. In addition, inexact 
Newton methods are particularly important for multi-
parameter FWI, as second order information helps to 
decouple different parameter classes (Virieux et al., 2017).  
 
Another successful strategy to mitigate the computing 
requirements of FWI is to use data subsampling, be it in the 
form of random sources encoding (Krebs et al., 2009) or of 
stochastic source subsampling, two methods that show 
similar performance (van Leeuwen and Herrmann, 2013). 
These methods take their roots in the stochastic 

optimization theory. In stochastic optimization, the descent 
direction is obtained by calculating the gradient on a 
random subset of the data, which reduces the cost of the 
computation. This method is advantageous for optimization 
problems of large size and large datasets (Bottou, 2010), 
like FWI. 
 
Most stochastic optimization algorithms used in FWI are 
based on first order gradient descent methods (van 
Leeuwen et al., 2011). As shown by Castellanos et al. 
(2015), the difficulty of introducing second order 
approximations stems from the error introduced by the 
random subsampling in the Hessian approximation. To be 
able to apply stochastic second order descent algorithms, a 
strategy to reduce this error must be adopted. In this study, 
we show how this can be achieved for the L-BFGS method. 
We first present the theory of L-BFGS with random 
sources subsampling and then show a performance 
comparison between the proposed algorithm and the 
standard stochastic descent method with the Marmousi 
model.  
 
Problem definition 
 
Full waveform inversion is formulated as a minimization 
problem: find the Earth parameters 𝒎 that minimize a 
measure of the discrepancy between the modelled and the 
recorded data, 𝒅. This measure is given by the cost 
function, often taken as the 𝑙! norm of the residuals: 
 

Χ!(𝒎) =
1
2

𝑺𝒊𝒗𝒊 𝒎 − 𝒅𝒊 ! 𝑺𝒊𝒗𝒊 𝒎 − 𝒅𝒊!∈!

𝒅𝒊 !𝒅𝒊!∈!
 (1) 

 
where Ω represents a source ensemble and 𝒗𝒊 is the 
modelled particle velocities due to source 𝑖, sampled at the 
recorder’s location by the sampling operator 𝑺. The cost 
function is normalized by the sum of the squared amplitude 
of the data to scale appropriately for different sources 
subset. In what follows, Χ! will be used to designate the 
cost function on a source subset Ω and Χ will be used for 
the cost function on the complete set of sources. 
 
The particle velocities 𝒗𝒊 obey the wave equation, which 
must be solved numerically for an arbitrarily heterogeneous 
Earth (Virieux et al., 2011). Solving the wave equation, or 
what we call forward modeling, represents the main 
computational cost of FWI. Time-domain finite differences 
(FDTD) remains the method of choice for large 3D elastic 
FWI. FDTD requires one complete forward modeling per 
source, which is why reducing the number of modelled shot 
points during inversion is advantageous. As solving the 
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Stochastic L-BFGS  

wave equation remains challenging even with the 
computational resources of today, the cost function is 
usually optimized with local line search algorithms of the 
following form: 

where 𝛻𝛸 is the misfit gradient, calculated at the cost of 
approximately two forward modelling per source owing to 
the adjoint method (Plessix, 2006), 𝛼 is the step size and 
𝑯! is an approximation of the inverse Hessian matrix, i.e. 
(𝑯! ≈ 𝛻!Χ!!) . For the simplest line search algorithm, the 
steepest descent or gradient descent, the approximation of 
the inverse Hessian is discarded, i.e. 𝑯! → 𝑰. Although this 
approach has the merit of being the most parsimonious in 
terms of forward modelling, it suffers from slow 
convergence.  
 
Brossier et al. (2009) show that a much better convergence 
can be attained at no additional forward modelling costs 
with the L-BFGS algorithm (Nocedal and Wright, 2006). 
Furthermore, this method does not require the complete 
storage of 𝑯!, which is prohibitive for large models. 
Instead, the product 𝑯!𝛻Χ can be computed by storing 𝑛 
vector pairs of parameter changes, 𝒔! = 𝒎!!! −𝒎!, and 
gradient changes, 𝒚! = 𝛻𝛸!!! − 𝛻𝛸!. The inverse Hessian 
preconditioning is then obtained with the two-loops 
recursion (Algorithm 1), which involves only vector 
products. This has a negligible cost compared to the 
forward/adjoint modelling. To ensure that the approximate 
inverse Hessian remains positive definite and that the step 
direction remains a descent direction, the step length 𝛼 is 
chosen to respect the Wolfe conditions, namely sufficient 
decrease of the cost function and its curvature. A simple 
line search implementing those two conditions is presented 
in Algorithm 2. The sufficient decrease and curvature 
conditions appear at lines 5 and 7 respectively. 

Stochastic formulation 
 
In the traditional form, the source ensemble Ω is constant 
throughout the inversion and taken as the complete 
ensemble of sources positions. On the other hand, the 
stochastic approach uses a random subset of the sources 
that changes at every iteration, with a number of sources 
usually much smaller than the complete ensemble. In what 
follows, this is achieved by doing a random draw on shot 
gathers, at each iteration, with a constant probability 
distribution over shots. Because the acquired seismic data 
is highly redundant by design, a small source subsample 
can be used to estimate the value of the cost function and 
its gradient. This subsampling introduces some noise, but 
on average, the expectation of the cost function should 
converge to the true value along iterations, which justifies 
the stochastic gradient descent (SGD) algorithm (equation 
(2) with 𝑯! → 𝑰 and 𝛻Χ → 𝛻Χ!!). 
 
The noise introduced by the stochastic subsampling is more 
problematic in the case of the L-BFGS algorithm. In 
particular, the gradient change vector 𝒚! = 𝛻𝛸!!!! −
𝛻𝛸!! will be dominated by the sampling noise if 
Ω!!! ≠ Ω!!!. Hence a naïve implementation of L-BFGS 
using the previously defined 𝒚! will be unstable, and in 
most cases, will diverge. As shown by Schraudolph et al. 
(2007) for online learning, we can circumvent this problem 
by using the same source subset in the evaluation of the 
vector pairs 𝒔! and 𝒚!. To efficiently implement this 
solution, we propose the stochastic SL-BFGS algorithm 
(Algorithm 3). A single iteration of this algorithm contains 
two parameters updates. After the first update (line 5), the 
gradient of the updated model is computed with the same 
subset of sources (line 6), which can be used to update the 
𝒔! and 𝒚! vectors (line 9). The Wolfe line search can 
proceed simultaneously, at virtually no cost because the 
gradient of the updated model is already computed. Note 

𝒎!!! = 𝒎! − 𝛼𝑯!𝛻Χ  (2) 

Algorithm 1: Two-loops recursion 
 
1. Inputs: 𝛻Χ, 𝑯𝒑𝒓𝒆   
2. 𝒒 ←  𝛻Χ 
3. for i=k-1…k-n do 
4.     𝜌! ← 𝒚!!𝒔!

!!
  

5.     𝛾! ← 𝜌!𝒔!!𝒒  
6.     𝒒 ←  𝒒 − 𝛾!𝒚! 
7. end for 
8. 𝒒 ←  𝑯𝒑𝒓𝒆𝒒   
9. for i=k-n…k-1 do 
10.     𝛽 ← 𝜌!𝒚!!𝒒 
11.     𝒒 ←  𝒒 + 𝒔! 𝛾! − 𝛽   
12. end for 
13. Outputs: 𝒒=𝑯𝛻Χ 

 

Algorithm 2: Wolfe line search 
 
1. Inputs: 𝒎, 𝒑, 𝛻𝛸!, 𝛸! 
2. 𝛼 ← 1,  𝜏 ← 0.6, 𝑐! ← 10!!, 𝑐! ← 0.9 
3. while stop_criteria do 
4.     Compute 𝛸,𝛻𝛸,𝑯𝒑𝒓𝒆 with 𝒎 ← 𝒎 + 𝛼𝒑 
5.     if  𝛸 > 𝛸! + 𝑐!𝒑𝑻𝛻𝛸! 
6.          𝛼 ←  𝜏𝛼 
7.     else if  𝒑𝑻𝛻𝛸 < 𝑐!𝒑𝑻𝛻𝛸! 
8.         𝛼 ←  𝛼/𝜏  
9.     else  
10.         break        
11. end while    
12. Outputs: 𝛼,𝛻𝛸,𝑯𝒑𝒓𝒆  
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Stochastic L-BFGS  

that, with high probability, 𝛼=1 for L-BFGS and the line 
search does not require any new computations. Finally, the 
gradient of the updated model is used to update the model a 
second time (line 10), without updating 𝒔! and 𝒚!, nor 
performing a line search. In our experience, this strategy 
allows two model updates using only two gradient 
computations, i.e. the step size 𝛼 = 1 respects Wolfe 
conditions most of the time. Note also that this algorithm 
can use a preconditioning matrix 𝑯𝒑𝒓𝒆, for example the 
diagonal approximation of Shin et al. (2001). 
 
Numerical experiment 
 
To evaluate the performance of the SL-BFGS algorithm, 
we performed an acoustic FWI experiment with the 
classical Marmousi model (Versteeg, 1994). For seismic 
modelling and gradient calculations, we used the FDTD 
code of Fabien-Ouellet et al. (2017). The Marmousi model 
is discretized on a grid with cells of 20x20 m2. We use the 
full aperture data, with shots and receivers every 20 meters, 
for a total of 460 shot points. The source is a Ricker 
wavelet with a central frequency of 7.5 Hz. The source 
signature and the density are considered fixed in this 
experiment, and no noise is added to the data. This is to 
keep to a minimum the number of factors that can impact 
FWI, as we want to focus on the convergence of different 
stochastic algorithms.  
 
We compared the performance of the SL-BFGS with the 
stochastic gradient descent SGD algorithm. For SL-BFGS, 
we use a memory length 𝑛 of 8. The stochastic gradient 
descent algorithm is identical to Algorithm 2, with the two-
loops recursion (lines 5 and 10) replaced by a simple 
preprocessing of the gradient, 𝒑! ← 𝑯!!𝛻𝛸!! . Hence, 
each iteration step of the two algorithms should have more 
or less the same cost, with two gradient calculations per 

Algorithm 3: Stochastic L-BFGS 
 
1. Inputs: 𝒎!, 𝒅 
2. while stop_criteria do 
3.     Draw 𝛀! from 𝒅 
4.     Compute  𝛸!! ,𝛻𝛸!!

! , 𝑯𝒑𝒓𝒆 !!
!   

5.     𝒑!! ← two-loops recursion 𝛻𝛸!!
! ,𝑯𝒑𝒓𝒆 !!

!   
6.     𝛼,𝛻𝛸!!

! ,𝑯𝒑𝒓𝒆 !!
! ←Wolfe search 𝒑!! ,𝛻𝛸!!

! ,𝛸!!  
7.     if k>n 
8.         Discard 𝒔!!!,𝒚!!!   
9.     𝒔! ← 𝛼𝒑!! ,  𝒚! ← 𝛻𝛸!!

! − 𝛻𝛸!!
!   

10.     𝒑!! ← two-loops recursion 𝛻𝛸!!
! ,𝑯𝒑𝒓𝒆 !!

!  
11.     𝒎!!! ← 𝒎! + 𝛼 𝒑!! + 𝒑!!  
12.     𝑘 ← 𝑘 + 1 
13. end while    

 

 
Figure 1:  True Marmousi model (a), initial model (b), SGD 
inverted model (c) and stochastic L-BFGS inverted model (d). 
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Stochastic L-BFGS  

iteration. We used the hierarchical inversion strategy of 
Bunks et al. (1995) and inverted sequentially for  increasing 
discrete frequencies (2, 3, 5, 8, 12 and 16 Hz). In our time 
domain code, those frequencies are computed with the Fast 
Fourier Transform. For each frequency, 40 iterations are 
performed. We started with a linearly increasing P-wave 
velocity model starting from 1500 m/s to 4200 m/s 
(Figure1 b). 
 
The inverted models obtained with SGD and SL-BFGS are 
presented in Figure 1 c) and d) respectively. Comparing the 
results with the true model (Figure 1 a), we see that the 
model above 2 km is very well reconstructed in both cases. 
Below 2 km, the inversion is more challenging due to 
poorer illumination, but the velocity magnitude is better 
reconstructed with the stochastic SL-BFGS algorithm. 
Overall, the resolution of the model obtained with SL-
BFGS is higher than the SGD inversion. This is due to the 
better convergence of SL-BFGS that can take advantage of 
the curvature information. 
 
To better compare the convergence of both algorithms, the 
cost function value is plotted against the number of 
iterations in Figure 2. At the lowest frequency of 2 Hz, both 
algorithms behave similarly and lead to more or less the 
same decrease in the cost function, with a faster decrease 
for SGD. However, from 5 Hz and higher, SGD 
performance degrades rapidly and the cost function stays 
above 10 %. The SL-BFGS convergence stays much more 
constant across frequency bands and reaches a plateau 
below 10% in all cases. This is the main reason why the 
model obtained by L-BFGS shows a much better solution: 
higher frequencies have converged, contrary to SGD.  
 
Conclusions 
 
We proposed a modification of the classical L-BFGS 
algorithm that supports the stochastic random subsampling 
of sources. The random subsampling allowed a drastic 
reduction of the computing time over the complete dataset 
with the Marmousi model: each iteration of the complete 
dataset would have required 460 shots, whereas we used a 
batch size of 20 shots with SL-BFGS. This represents a 
mere 5% of the cost of traditional L-BFGS for the same 
number of iterations. The second order information 
included in SL-BFGS allowed an improved convergence 
over SGD, at virtually no further computing costs. In 
summary, the stochastic L-BFGS algorithm allows a much 
faster convergence than SGD, at a fraction of the cost of the 
non-stochastic version.  
 
Acknowledgements  
 
This work was supported by the Vanier Canada Graduate 
Scholarships. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2:  Cost function value as a function of iteration number for 
SGD and SL-BFGS. Increasing frequency bands are shown on the 
top axis.  
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