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ABSTRACT

Reconstructing the variation of contaminant concentration with a limited number of soil
samples is more or less the norm, even though it fails more often than not for problems of even
moderate complexity. To overcome the limits inherent to discrete measurements, we propose to
integrate soil sampling with continuous surface geophysical measurements in a geostatistical
framework. We present this integrated analysis for a PAH contaminated site in France. For the
study site, two 3D surveys were acquired: an electrical resistivity tomography survey and a seismic
travel time tomography survey. Those two surveys permitted us to infer two spatially continuous
physical properties on the whole volume, namely the electrical resistivity and P-wave velocity. The
probability density function relating the velocity-resistivity pairs with each of the 75 lab
measurements of PAH concentration was modeled using a Gaussian kernel. This probability
density function combined with the 3D volumes of resistivity and P-wave velocity provided a
means to translate the latter into a 3D map of PAH concentration. This 3D map of concentration
was then used as a secondary variable in a cokriging simulation of the 75 lab samples, thus
reintroducing the spatial correlation of the initial dataset. Comparing this final 3D PAH
concentration model with the simple kriging of the PAH samples, the geophysical integrated model
reproduce much better the distribution of measured concentration, shows a much more realistic
spatial pattern of the contamination, and lowers the estimated contaminated volume.

Introduction

Geophysical data are useful to bridge the gap

between discrete measurements and a continuous 3D

representation of the subsurface (Ruggeri et al., 2013).

Indeed, geophysical surveys bring information on spatial

connectivity that cannot be inferred from discrete

measurements. Applied to soil characterization, geo-

physical properties can be affected directly by the

presence of contaminants (Ajo-Franklin et al., 2006;

Geller and Myer, 1995; Rucker et al., 2009), or

indirectly by preferential migration pathways (Coscia

et al., 2012). In this work, we show the integration of a

3D geophysical survey with direct soil sampling to

obtain a more precise estimation of contaminated soil

volumes in a complex, heterogeneous geology.

Study Site

The study site is located in an industrial

environment. The main contaminating activity is the

creosote treatment of wood, which began in the 1950s.

Creosote contamination of soil and groundwater is of

concern in the area, as local inhabitants rely on

groundwater for drinking water. This contamination

takes mainly the form of polycyclic aromatic hydro-

carbons (PAH). Our study focuses on a small area of the

property, measuring 30 m by 200 m. In this area, two

sources of PAH contamination have been identified: a

tailings pond and a sump, which were used to treat

wastewater on site. The goal of this work is to

characterize the extent of those sources, particularly

in the unsaturated sediments.

The natural sediments in place are comprised of a

relatively homogeneous coarse alluvial sands deposit.

However, due to the industrial nature of the site, backfill

materials of different sources and composition have been

put in place at different periods. Hence, the first several

meters of soils are heterogeneous. For this reason,

mapping the extent of the contaminated zone through

direct soil sampling is challenging.
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Field Measurements

We base our characterization effort on a recent soil

and water sampling campaign. The following analysis is

based on the total PAH concentrations in soil measured on

75 of those samples. Many measurements exceeded 70

mg/kg, the limit after which contaminants may migrate

and contaminate water. The highest measured concentra-

tion reached 7,000 mg/kg. Hence, soil contamination is

known to be present, but contaminated volumes are

difficult to predict due to the backfill heterogeneity.

Soil sampling was complemented by surface

geophysical measurements. Two methods were chosen

on site because of their ability to infer physical

properties correlated with the lithology: electrical

resistivity tomography (ERT) and seismic refraction

tomography. In total, nine parallel ERT lines were

acquired along the east-west direction and 10 parallel

lines were acquired along the northwest-southeast

direction. Each line consisted of 48 electrodes with a

spacing of 1.5 m, in a dipole-dipole configuration. The

resulting electrical resistivity model is shown in Fig.

1(a). The inverted lines were interpolated with an inverse

distance weighting algorithm to obtain a 3D continuous

model. Resistivity values vary strongly laterally and

vertically. Surface backfill materials are usually resis-

tive, but can vary between 100 and 1,000 ohm-m. This

high level of soil heterogeneity is caused by different

backfills that were put in place at different times.

A total of five parallel seismic lines were acquired

in the east-west direction. Geophones were planted at a 2

m interval and sources were positioned at every 6 m. The

seismic lines were also inverted in 2D and interpolated

with an inverse distance weighting to obtain a 3D

continuous model. The quality of the inversion is very

good with a root mean square error between 0.7 and 1.8

% for each line. The resulting velocity 3D model is

shown in Fig. 1(b). Lateral variations are much more

subtle than that shown for ERT. However, three layers

are visible, with the first layer comprising a loose dry

soil layer with a velocity around 300 m/s. The next layer

is a saturated sediment with a velocity near 1,400 m/s.

The lower layer represents the bedrock, around 2,500 m/

s. Small velocity variations are present within each layer.

Data Integration

The difficulty of using direct correlations between

geophysical measurements and soil contaminant concen-

trations is well illustrated in this study. Insets within Figs.

1(a)–(b) show crossplots between the measured total PAH

concentration in soil samples and electrical resistivity and

P-wave velocity, respectively. A very poor correlation

coefficient of -0.28 is obtained for ERT, and a better

correlation of 0.6 for seismic velocities. This is to be

expected as organic contaminants are far from being the

only factor influencing the electrical resistivity or P-wave

velocity of soils. On their own, very little quantitative

information can be obtained from these correlations.

Based on the observation that other factors may

influence either electrical resistivity or P-wave velocity,

we seek to build a multi-parameter relationship that

suppresses common variance due to unknown factors and

amplify the influence of PAH concentrations. To do so,

we use the kernel density estimation approach of (Silver-

man, 1981), with which we build a density function taking

as input the electrical resistivity and the P-wave velocity

and outputs the PAH concentration. The density function

is obtained by interpolating known sample triplets with a

Gaussian kernel. The results are shown in Fig. 1(c). In the

resistivity-velocity plane, PAH samples are gathered in

families of high and low levels of concentration. This

shows that contaminated zones take specific pairs of P-

wave and electrical resistivity. Application of the

methodology allows a recovery of the mean of the PAH

conditional distribution given any value of measured

resistivity and P-wave velocity. These families cannot be

obtained from one-to-one linear correlations alone.

Using this density function, we can convert the

resistivity and velocity 3D models into a 3D PAH pseudo-

concentration map, shown in Fig. 1(d). The model does

not reproduce exactly the measured values of PAH

concentration at the samples location, as shown in the

inset of Fig. 1(d). This is to be expected, as the kernel

averages the PAH values around each velocity-resistivity

pair. However, the correlation between measured and

predicted concentration is very good, at 0.95. In order to

honor exactly the measured PAH values, we used

collocated cokriging with the PAH model built with the

kernel as a secondary variable (Fig. 1(f)). As shown in the

crossplot, the final cokriged model reproduces exactly the

measured concentrations. Comparing this model with the

result of simple kriging that does not include information

from geophysical measurements (Fig. 1(e)), we see that

simple kriging produces overestimated values of concen-

tration. However, when all of the geophysical information

was included, it allowed the geostatistical estimation of

PAH to be performed locally in zones of similar

resistivity-velocity values.

Conclusion

With appropriate geophysical measurements, a

multiparameter function with geophysical properties as
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Figure 1. a) 3D interpolated resistivity, b) 3D interpolated P-wave velocity, c) density function, d) PAH
concentration given by the density function, e) PAH concentration obtained by simple kriging, and f) PAH
concentration obtained by cokriging. The coloured triangles show the locations of PAH measurements. The
insets show the correlation of either the measured value or the estimated PAH concentration from each
respective method with laboratory measurements.
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input and concentration value as output can be built with

a kernel estimation. Using this function, we built an

intermediate concentration model that was used as a

secondary variable for cokriging of the soil-sampled

PAH values. The final PAH concentration model

obtained with this methodology allowed to better

delineate contaminated zones compared to the simple

kriging of discrete PAH measurements. We do not claim

that this workflow is applicable to all contamination

types or all geological settings, but in some cases, as

shown in this study, it can be used successfully to

integrate geophysical information at low cost.
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