
30 May – 2 June 2016 | Reed Messe Wien

78th EAGE Conference & Exhibition 2016
Vienna, Austria, 30 May – 2 June 2016

Tu LHR1 10
Viscoelastic Forward and Adjoint Modeling with
OpenCL on Heterogeneous Clusters
G. Fabien-Ouellet* (INRS-ETE), E. Gloaguen (INRS-ETE) & B. Giroux (INRS-
ETE)

SUMMARY
Efficient seismic modeling is more and more needed because of the advent of full waveform inversion
(FWI). For real case FWI, an efficient usage of the available computer resources is paramount. With the
diversity of processor architectures found today, this is not a trivial task. In this study, we investigate the
use of OpenCL to take advantage of large heterogeneous clusters in the context of FWI. The main
objective is to present a scalable, multi-device code for the resolution of the viscoelastic wave equation
that can compute the gradient of the objective function by the adjoint state method. We present several
algorithmic aspects of our program in details, with an emphasis on its different levels of parallelism. The
performance of the program is shown with several tests performed on large clusters with nodes containing
three types of processors: Intel CPUs, NVidia GPUs and Intel Xeon PHI. We obtain a speed-up of more
than 80 when using GPUs compared to a single threaded implementation and a linear scaling when
computations are divided on separate nodes. Our results show that OpenCL allows a better usage of the
computing resources available using a single source code for a multitude of devices.

30 May – 2 June 2016 | Reed Messe Wien

78th EAGE Conference & Exhibition 2016
Vienna, Austria, 30 May – 2 June 2016

 Introduction

In the seismic community, General-Purpose Computing on Graphics Processing Units (GPGPU) has
been applied most successfully to modeling wave propagation with Finite-Difference Time-Domain
(FDTD) schemes. Several authors report an acceleration by a factor between 20 to 60 between a single-
core and a single GPU implementations (Michéa and Komatitsch, 2010; Okamoto, 2011; Rubio et al.,
2014; Weiss and Shragge, 2013). Multi-GPU implementations are also presented by these authors, all
showing a sub-linear scaling.

Nearly all of the GPGPU seismic modeling codes have been implemented with the use of the CUDA
standard (Nvidia, 2007). CUDA allows to easily program on Nvidia’s GPUs; however a CUDA program
cannot run on devices other than Nvidia’s GPUs. On the other hand, OpenCL (Stone et al., 2010) is an
open programming standard capable of using most existing types of processors and is supported by the
majority of manufacturers like Intel, AMD and Nvidia, with performances comparable to CUDA (Du
et al., 2012). Despite this advantage over CUDA, few published seismic modeling codes use OpenCL.

Efficient seismic modeling is more and more needed because of the advent of full waveform inversion
(FWI). FWI is the process of recovering the Earth (visco)-elastic parameters by directly comparing raw
seismic records to the solution of the wave equation (Tarantola, 1984; Virieux and Operto, 2009). Its
main bottleneck is the numerical resolution of the wave equation that must be repeatedly performed for
hundreds if not thousands of shot points for a typical survey. In addition, FWI requires the computation
of the misfit gradient by the adjoint state method (Plessix, 2006), a method based on the same FDTD
algorithm as the forward model. Hence, the benefit of a faster FDTD code is twofold.

In this study, we investigate the use of OpenCL for modeling wave propagation in the context of time
domain FWI. The main objective is to present a scalable, multi-device and portable code for the reso-
lution of the 2D and 3D viscoelastic wave equation that can additionally compute the gradient of the
objective function used in FWI by the adjoint state method. First, the equations for viscoelastic wave
propagation are briefly discussed. Then, different algorithmic aspects of the program are presented in
details. Finally, numerical results are presented performed on large clusters with nodes containing three
types of processors: Intel CPUs, Nvidia’s GPUs and Intel Xeon PHI.

Theory

The goal of full waveform inversion is to estimate the viscoelastic parameters of the earth based on some
records of the ground motion dididi, usually in the form of particle velocities or pressure. This is performed
by the minimization of a cost function, usually taken as the least-squares misfit of the raw seismic traces:

J (mmm) =
1
2
(SSS (vi)−dididi)

T (SSS (vi)−dididi) , (1)

where SSS is the sampling operator. In this work, the forward model is given by the viscoelastic wave
equation using the generalized standard linear solid (GSLS) as described by (Carcione et al., 1988;
Robertsson et al., 1994):

v̇i =
1
ρ

∂σi j

∂x j
+ fi, (2a)

σ̇i j =

(
M

1+Lτp

1+ατp
−2µ

1+Lτs

1+ατs

)
∂vk

∂xk
δi j +µ

1+Lτs

1+ατs

(
∂vi

∂x j
+

∂v j

∂xi

)
+

L

∑
l=1

ri jl + fi j, (2b)

ṙi jl =−
1

τσ l

[(
M

τp

1+ατp
−2µ

τs

1+ατs

)
∂vk

∂xk
δi j +µ

τs

1+ατs

(
∂vi

∂x j
+

∂v j

∂xi

)
+ ri jl

]
, (2c)

where v are the velocities, σ the stresses, r the memory variables implementing viscous attenuation, ρ

is the density, M is the P-wave modulus, µ is the shear modulus, τσ l are the relaxation times for the L
Maxwell bodies and τp and τs are the attenuation levels.

30 May – 2 June 2016 | Reed Messe Wien

78th EAGE Conference & Exhibition 2016
Vienna, Austria, 30 May – 2 June 2016

 The adjoint model equation has the same form as equation 2, with the source term equal to the data resid-
uals reversed in time, i.e. f = (SSS (vi)−dididi)|T−t . Once the forward and adjoint wavefields are computed,
the misfit gradient can be computed by their cross-correlation (Tarantola, 1988).

OpenCL implementation

Equation 2 is is solved using a finite-difference approach with a standard staggered grid similar to Levan-
der (1988) and Bohlen (2002). Spatial derivatives are approximated by finite-differences of order 2 to
12 and temporal derivatives are approximated by a stencil of order 2. In the classic leapfrog manner,
velocities and stresses are updated sequentially. At each time step, the wavefield update is independent
for each grid point. This conforms to the single-program multiple-data model and is the reason why
FDTD computation is efficient on a GPU architecture. However, the computation of the spatial deriva-
tive requires a number of nearest neighbour grid points equal to the stencil order. This requires a careful
usage of the GPU local memory.

The simplified algorithm implemented in OpenCL is described in algorithm 1. Several levels of paral-
lelism exist in our code. First, nodes of a cluster are divided into groups, each performing the simulation
on a subset of shots (task-parallel decomposition). Within each group, devices share computation by do-
main decomposition (Mattson et al., 2004), represented by the loops on lines 2 and 3 of algorithm 1. This
decomposition requires memory communication that is implemented with MPI. To facilitate this com-
munication, the update computations are split between grid points required in the communication and
interior points (lines 6 to 11 of algorithm 1). Finally, there is a level of parallelism inside each OpenCL
device, where the update of the wavefield is performed simultaneously for several grid points. These
different levels of parallelism allow obtaining the best performances for large heterogeneous clusters
containing any mix of GPUs, CPUs and accelerators.

Algorithm 1 Adjoint modeling

1: procedure TIMESTEPPING(group, source)
2: for all nodes ∈ group do
3: for all devices ∈ node do
4: for t← 0,Nt do
5: InjectInjectInject source
6: UPDATE(v, σ ,boundary)
7: TransferTransferTransfer v between devices, nodes
8: UPDATE(v, σ ,interior)
9: UPDATE(σ , v, boundary)

10: TransferTransferTransfer σ between devices, nodes
11: UPDATE(σ , v, interior)

12: procedure UPDATE(v, σ , domain)
13: for all local ∈ domain do
14: for all points ∈ local do
15: LoadLoadLoad σ from global memory to local memory
16: ComputeComputeCompute ∂iσ from local memory
17: UpdateUpdateUpdate v in global memory

Performance

We present here two tests demonstrating the performance of the OpenCL program. The first test com-
pares the running time of the OpenCL program with the single threaded implementation of Bohlen
(2002), for three device architectures: a Nvidia Tesla K40 GPU, a CPU device containing two Intel
Xeon E5-2680 v2 processors with 10 cores each at a frequency of 2.8 GHz and with 25 MB of cache
and an Intel Xeon Phi 5110P accelerator. Results are shown in Figure 1. A maximum speed-up of 80
is attained with the GPU used in this study. The worst performing device is the Xeon PHI, probably

30 May – 2 June 2016 | Reed Messe Wien

78th EAGE Conference & Exhibition 2016
Vienna, Austria, 30 May – 2 June 2016

 because our program was not designed for this architecture. This shows that OpenCL still can require
device specific optimization for maximum efficiency.

50 70 100 140 200 280
1

2

4

8

16

32

64

128

S
p
e
e
d
 u

p

N

GPU elastic

CPU elastic

PHI elastic

GPU viscoelastic

CPU viscoelastic

PHI viscoelastic

Figure 1 Speedup over a single threaded CPU implementation for different model sizes in 3D.

A strong scaling test is presented in Figure 2. This test consists in comparing the running time of the
simulation for a fixed model s ize of 96x96x1000 for an increasing number of d evices. This t est was
performed for three different configurations: on a single node containing 16 Nvidia GPUs, on multiple
nodes containing 2 Nvidia GPUs and on multiple nodes containing CPUs only. The results show a quasi-
linear scaling on nodes containing GPUs and a slightly worst scaling for nodes using CPUs. These results
show that our OpenCL program is able to compute efficiently the wave equation solution for large 3D
problems.

1 2 4 8 16 32
1

2

4

8

16

32

N→

← N
4/5

S
p
e
e
d
 u

p

N devices

16 GPUs/node

2 GPUs/node

 2 CPUs/node

Figure 2 Strong scaling tests for a grid size of 96x96x1000.

Conclusions

In this work, OpenCL was used in the context of a large heterogeneous cluster for seismic modeling
and for the adjoint computation of the misfit g radient i n F WI. I t w as s hown t hat O penCL w as able
to take advantage of several processor architectures and lead to a significant speed-up when used with
GPUs. An efficient integration of OpenCL and MPI allows the modeling of large 3D models over several
nodes. Many aspects of the performance of OpenCL were not addressed in this paper, in particular, the
efficiency o f t he d ifferent a pproaches t o e valuate t he w avefield cr oss-correlation du ring th e gradient
computation (in time or in frequency). Also, the impact of the finite-difference order was not addressed

30 May – 2 June 2016 | Reed Messe Wien

78th EAGE Conference & Exhibition 2016
Vienna, Austria, 30 May – 2 June 2016

 here. Further optimization for the Xeon Phi should also be the topic of future work.

Acknowledgements

This work was funded by a Vanier Canada Graduate Scholarship and supported by the Canada Chair in
geological and geophysical data assimilation for stochastic geological modeling.

References

Bohlen, T. [2002] Parallel 3-D viscoelastic finite difference seismic modelling. Computers and Geo-
sciences, 28(8), 887–899.

Carcione, J.M., Kosloff, D. and Kosloff, R. [1988] Viscoacoustic wave propagation simulation in the
earth. Geophysics, 53(6), 769–777.

Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G. and Dongarra, J. [2012] From CUDA to
OpenCL: Towards a performance-portable solution for multi-platform GPU programming. Parallel
Computing, 38(8), 391–407.

Levander, A.R. [1988] Fourth-order finite-difference P-SV seismograms. Geophysics, 53(11), 1425–
1436.

Mattson, T.G., Sanders, B.A. and Massingill, B.L. [2004] Patterns for parallel programming. Pearson
Education.

Michéa, D. and Komatitsch, D. [2010] Accelerating a three-dimensional finite-difference wave propa-
gation code using GPU graphics cards. Geophysical Journal International, no–no.

Nvidia, C. [2007] Compute unified device architecture programming guide.
Okamoto [2011] Accelerating large-scale simulation of seismic wave propagation by multi-GPUs and

three-dimensional domain decomposition. Earth, Planets and Space, 62(12), 939–942.
Plessix, R.E. [2006] A review of the adjoint-state method for computing the gradient of a functional with

geophysical applications. Geophysical Journal International, 167(2), 495–503.
Robertsson, J.O.A., Blanch, J.O. and Symes, W.W. [1994] Viscoelastic finite-difference modeling. Geo-

physics, 59(9), 1444–1456.
Rubio, F., Hanzich, M., Farrés, A., de la Puente, J. and María Cela, J. [2014] Finite-difference staggered

grids in GPUs for anisotropic elastic wave propagation simulation. Computers and Geosciences, 70,
181–189.

Stone, J.E., Gohara, D. and Shi, G. [2010] OpenCL: A parallel programming standard for heterogeneous
computing systems. Computing in science and engineering, 12(1-3), 66–73.

Tarantola, A. [1984] Inversion of seismic reflection data in the acoustic approximation. Geophysics,
49(8), 1259–1266.

Tarantola, A. [1988] Theoretical background for the inversion of seismic waveforms including elasticity
and attenuation. Pure and Applied Geophysics, 128(1-2), 365–399.

Virieux, J. and Operto, S. [2009] An overview of full-waveform inversion in exploration geophysics.
Geophysics, 74(6), WCC1–WCC26.

Weiss, R.M. and Shragge, J. [2013] Solving 3D anisotropic elastic wave equations on parallel GPU
devices. Geophysics, 78(2), F7–F15.

