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SUMMARY
Viscous attenuation can have a strong impact on seismic wave propagation, but is rarely taken into account
in full waveform inversion (FWI). In the time domain, when viscoelasticity is considered, the
displacement formulation of the wave equation is usually used. However, the adjoint state equations are
quite different for the velocity-stress formulation than for the displacement formulation. In this paper, we
derive the adjoint state equations for the viscoelastic wave equation based on the velocity-stress
formulation. Using a modified definition of the memory variables commonly found in the literature, we
define a Lagrangian from which the adjoint state equations and the misfit gradient are derived. The
resulting expressions are similar to the displacement formulation, but differ by the source term and by the
wavefield cross-correlations giving the misfit gradient. To validate our results, the misfit gradient obtained
by the adjoint state method is compared to the misfit gradient calculated by finite-difference for a
simplified problem, giving an excellent agreement. In short, this work gives the right adjoint state
equations for the velocity-stress formulation, which is commonly used for time-domain viscoelastic
modeling. Further studies are required to evaluate the performance of this approach in real FWI
viscoelastic experiments.
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 Introduction

Viscous attenuation can have a strong impact on seismic wave propagation. However, it is rarely taken
into account in full waveform inversion (FWI), even though the theory was developed from the very
beginning (Tarantola, 1988). A number of different approaches have been proposed for viscous FWI,
most notably in the frequency domain (Song et al., 1995) or in the Laplace-Fourier domain (Kamei
and Pratt, 2013). The simplicity of modelling viscous attenuation in the frequency domain is one of
its main advantages over the time-domain; one only has to define complex velocities to implement an
arbitrary attenuation profile in frequency (Toksöz and Johnston, 1981). In contrast, the time-domain
approach usually requires the resolution of additional differential equations for memory variables (Car-
cione et al., 1988; Robertsson et al., 1994), and obtaining a desired attenuation profile in frequency is
not straightforward (Blanch et al., 1995). However, the time-domain approach remains useful for large
3D models where the memory usage of the frequency approach is prohibitive, or when many frequencies
are needed during inversion (Fichtner, 2011). The literature on viscous FWI in the time-domain is much
more tenuous than in the frequency domain. Most authors like (Liao and McMechan, 1995; Causse
et al., 1999; Bai et al., 2014) only consider the viscoacoustic case. When viscoelasticity is considered
like in Tarantola (1988) or more recently Fichtner et al. (2006) and Askan et al. (2007), the displacement
formulation of the wave equation is used. However, the adjoint state equations are quite different for the
velocity-stress formulation, and their results cannot be used directly with the formulation of Robertsson
et al. (1994).

In this paper, we derive the adjoint state equations for the viscoelastic wave equations based on the
velocity-stress formulation. Our approach is inspired by the method of Castellanos et al. (2011) who
derived the adjoint state equations for the elastic case. The main body of the paper focuses on the adjoint
state equations derivation with the method proposed by Plessix (2006). The misfit gradient obtained by
the adjoint state method is then compared to the misfit gradient calculated by finite-difference for a
simplified problem.

Theory

The goal of full waveform inversion is to estimate the viscoelastic parameters of the ground mmm =
(ρ,M,µ,τp,τs) based on some records of the ground motion dddi, usually in the form of particle velocities
or pressure. This is performed by the minimization of a cost function, usually taken as the least-squares
misfit of the raw seismic traces:

J (φφφ ;mmm) =
1
2
(SSS (φi)−dididi)

T (SSS (φi)−dididi) , (1)

where SSS is the sampling operator and where the seismic wavefield is described by the state vector:

φφφ = (vx,vy,vz,σxx,σyy,σzz,σxy,σxz,σyz,Rxx,Ryy,Rzz,Rxy,Rxz,Ryz)
T , (2)

where v is the particle velocity, σ is the stress and R is the memory variable defined below. In this paper,
the forward model is given by the viscoelastic wave equation using the generalized standard linear solid
as described by Carcione et al. (1988) and Robertsson et al. (1994). We use the formulation corrected for
the phase velocity similar to Bohlen (2002). In order to derive the adjoint state equations, an alternative
form of the memory variables is used: the memory variable R is the integration in time of the memory
variables used by the previous authors. In a matrix formulation, the forward model is given by:

F (φφφ ;mmm) = ∂ttAAAφφφ +∂tBBBφφφ −CCCφφφ −sss = 0, (3)

with the following matrices and parameters:

AAA = 0009

L⊕
l=1

τσ lIII6, BBB = III9+6L, CCC =


0003

1
ρ

[
DDD1 DDD2

]
1+L

λeDDD3 +2µeDDD1
µeDDD2[

λvDDD3 +2µvDDD1
µvDDD2

]
L

0006+6L

 , (4a)
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DDD1 =

 ∂x 0 0
0 ∂y 0
0 0 ∂z

 , DDD2 =

 ∂y ∂z 0
∂x 0 ∂z
0 ∂x ∂y

 , DDD3 =

 ∂x ∂y ∂z
∂x ∂y ∂z
∂x ∂y ∂z

 , (4b)

λe = M
1+Lτp

1+ατp
−2µ

1+Lτs

1+ατs
, µe = µ

1+Lτs

1+ατs
, (4c)

λv = M
τp

1+ατp
−2µ

τs

1+ατs
, µv = µ

τs

1+ατs
, (4d)

α =
L

∑
l=1

ω2
0 τ2

σ l

1+ω2
0 τ2

σ l
. (4e)

The symbols 000n and IIIn are the nxn zero and identity matrices and
⊕

stands for the direct sum. This
formulation includes L Maxwell bodies, each with its own relaxation time τσ l . The quality factor is a
function of the attenuation levels τp and τs, and arbitrary attenuation profiles can be approximated by a
superposition of Maxwell bodies (Bohlen, 2002).

Given the transform matrices:

ΛΛΛ = ρIII3
⊕ 1

3λe +2µe
III1
⊕ 1

2µe
III2
⊕ 1

µe
III3

L⊕
l=1

[
1

3λv +2µv
III1
⊕ 1

2µv
III2
⊕ 1

µv
III3

]
, (5a)

TTT = III3

L+1⊕
l=1

[
RRR
⊕

III3

]
, RRR =

 −1 −1 −1
−1 1

2

(√
3+1

) 1
2

(
−
√

3+1
)

−1 1
2

(
−
√

3+1
) 1

2

(√
3+1

)
 , (5b)

a symmetric forward model is obtained by performing a change of variables and multiplying equation
(3) by ΛTΛTΛT , giving:

F ′ (φφφ ;mmm) = ∂ttAAA′φφφ ′+∂tBBB′φφφ ′−CCC′φφφ ′−sss′ = 0, (6)

with AAA′=ΛTATΛTATΛTAT , BBB′=ΛT BTΛT BTΛT BT ,CCC′=ΛTCTΛTCTΛTCT , sss′=ΛTΛTΛTsss and φφφ ′=TTTφφφ . With the transformed forward model,
we define the following Lagrangian:

L
(
φ̃̃φ̃φ
′,ψ̃̃ψ̃ψ ′;mmm

)
= J

(
φ̃̃φ̃φ
′;mmm
)
−
〈
ψ̃̃ψ̃ψ
′,∂ttAAA′φ̃̃φ̃φ ′+∂tBBB′φ̃̃φ̃φ ′−CCC′φ̃̃φ̃φ ′−sss′

〉
. (7)

where φ̃̃φ̃φ ′ is any realisation of the state vector and ψ̃̃ψ̃ψ ′ is any realisation of the adjoint state. The notation
〈aaa,bbb〉=

∫
T
∫

X aαbαdxxxdt denotes the scalar product. We transform the Lagrangian by integrating by part
twice the term containing the matrix AAA′, once the matrix BBB′ and using Gauss theorem with the term
containing the matrix CCC′. Using the null boundary conditions and the symmetry of the three matrices,
we can rewrite equation (7) as:

L
(
φ̃̃φ̃φ
′,ψ̃̃ψ̃ψ ′;mmm

)
= J

(
φ̃̃φ̃φ
′;mmm
)
−
〈
∂ttAAA′ψ̃̃ψ̃ψ ′−∂tBBB′ψ̃̃ψ̃ψ ′+CCC′ψ̃̃ψ̃ψ ′, φ̃̃φ̃φ ′

〉
+
〈
ψ̃̃ψ̃ψ
′,sss′
〉
. (8)

Equating to zero the derivative of equation (8) with respect to φ̃̃φ̃φ ′ gives the adjoint state equations. Per-
forming the back transformation, we obtain:

←−
F (ψψψ,φφφ ;mmm) = ∂ttAAAψψψ−∂tBBBψψψ +CCCψψψ−ΛΛΛ

−1TTT
∂J
∂φφφ

TTT = 0 (9)

This last equation is similar to the usual back propagation equation obtained by Tarantola (1988) for
the displacement formulation. The adjoint state equations for the velocity-stress formulation given here
differ essentially by the source term. Its interpretation remains, however, the same: the adjoint state
equations are the back-propagation in time of the data residuals. It thus can be obtained by the same
modelling algorithm as the forward solution.
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 Finally, the misfit gradient for the viscoelastic parameters is obtained by the derivative of the Lagrangian
with respect to the inversion parameters:

∂J
∂mα

=
∂L

∂mα

=−
〈

TTTψψψ,
∂ΛΛΛ

∂mα

TTT (∂ttAAAφφφ +∂tBBBφφφ −sss)
〉
. (10)

The misfit gradient can thus be obtained by the cross-correlation of the forward and adjoint wavefields.
This cross-correlation can be computed in time or in the frequency domain using Parceval’s theorem.

Numerical validation

To test the validity of the misfit gradient obtained by the adjoint state equations, a synthetic 2D cross-
well tomography survey is simulated. As no analytical solution exists for the misfit gradient, the adjoint
state gradient is compared to the gradient computed by finite differences. The wells separation is 250
m and the source and receiver spacing are respectively 60 m and 12 m. Circular perturbations of 60 m
radius for the five viscoelastic parameters were considered at five different locations over a homogeneous
background with Vp = 3500 m/s, Vs = 2000 m/s, ρ = 2000 kg/m3 and τp = τs = 0.2. The perturbations
strength is 5 % of the constant value. Because significant crosstalk can exist between parameters (Kamei
and Pratt, 2013), we computed the gradient for one type of perturbation at a time. For example, the P-
wave velocity gradient is computed with constants models for all other parameters other than Vp. This
eliminates any crosstalk and allows a better appraisal of the match between the gradient update and the
given perturbations. The FD solution was obtained by perturbing each parameter of the grid sequentially
by 2%, for all the grid position between the two wells.
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Figure 1 A cross-well experiment to test the validity of the misfit gradient given by the adjoint state
method. The red triangles represent the sources position and the red dots the receivers position. The
color map is normalized for each panel

In Figure 1, each column represents a different parameter. The first row shows the perturbation, the
second row shows the misfit gradient obtained by finite differences and the third row shows the misfit
gradient by the adjoint state equations. The excellent agreement between the adjoint state gradient
and the FD gradient for all parameters can be visually appraised in Figure 1. In addition, the gradient
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 correction is well centered on the perturbations. Hence, the inversion should converge to the right
solution in the five different cases, the gradient pointing already toward the right direction. This is
expected considering the small value of the perturbation used in this experiment.

Conclusions

In this paper, we derived the time-domain adjoint state equations for the viscoelastic wave equation in
the velocity-stress formulation. The resulting equations differ from the displacement formulation by
the source term and the cross-correlation expressions for the misfit gradient. We showed that the misfit
gradient obtained by the adjoint state method is nearly identical to the misfit gradient obtained by finite
differences. Further studies are required to assess the potential of this formulation to be used in real FWI
cases. Also, the use of the attenuation parameters instead of the Q factors should be studied in more
details.
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