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ABSTRACT

New processors are increasingly supporting half-precision
floating-point numbers, often with a significant throughput
gain over single-precision operations. Seismic modeling, im-
aging, and inversion could benefit from such an acceleration,
but it is not obvious how the accuracy of the solution can be
preserved with a very narrow 16-bit representation. By scal-
ing the finite-difference expression of the isotropic elastic
wave equation, we have found that a stable solution can be
obtained despite the very narrow dynamic range of the half-
precision format.We develop an implementation with the
CUDA platform, which, on most recent graphics processing
units (GPU), is nearly twice as fast and uses half the memory
of the equivalent single-precision version. The error on seis-
mograms caused by the reduced precision is shown to corre-
spond to a negligible fraction of the total seismic energy and
is mostly incoherent with seismic phases. Finally, we find that
this noise does not adversely impact full-waveform inversion
nor reverse time migration, which both benefit from the
higher throughput of half-precision computation.

INTRODUCTION

Seismic imaging and inversion are now mostly based on the full-
wave equation, through techniques such as full-waveform inversion
(FWI) (Virieux and Operto, 2009) or reverse time migration (RTM)
(Baysal et al., 1983). The cost of numerically solving the wave
equation can be quite high, especially with the recent trends of large
3D seismic surveys and complex physics including elasticity
(Raknes and Arntsen, 2015), anisotropy (Warner et al., 2013), and
attenuation (Yang et al., 2016; Fabien-Ouellet et al., 2017c).

To cope with the ever-increasing computational cost of such
methods, numerical algorithms used for seismic modeling must
be able to benefit from hardware evolution. This has been the case
with the shift to general purpose GPU computing, which has accel-
erated significantly the finite-difference time-domain (FDTD) and
the spectral-element methods (Micikevicius, 2009; Komatitsch
et al., 2010; Fabien-Ouellet et al., 2017b).
The recent boom of machine-learning applications is now a major

driving force behind processors and hardware evolution. Because
training neural networks can be done with lower precision formats,
new accelerators now support half-precision (FP16) storage and
arithmetic. For example, Nvidia Tesla P100 and V100 can use
half-precision to achieve twice the throughput of single precision.
Even larger accelerations are possible with the use of Tensorcores,
processing units specialized for matrix multiplication. This shift in
favor of FP16 is industry wide and includes nearly all major man-
ufacturers such as Intel, Nvidia, and AMD.
The number of bits used in floating-point representation directly

affects the accuracy of numerical algorithms. The standards for
scientific computation are the single-precision (FP32) and double-
precision format (FP64) (Bailey, 2005). The FP16 format, containing
only 16 bits, has long been deemed unfit for scientific computing.
However, accuracy requirements are highly variable between algo-
rithms and applications.
For instance, different migration algorithms and even different

parts of one migration algorithm may have different precision re-
quirements. Abma (2006) shows that double precision is required
for triangle filter antiliasing for Kirchhoff migration, but that single
precision can be used with appropriate preprocessing. Levin (2004)
concludes that single precision is sufficient for 3D prestack Kirch-
hoff migration. Fu et al. (2008) investigate different bit reduction
strategies for the double-square-root condition used in down-
ward-continued-based migration and conclude that the bit width
of a fixed-point format can be reduced from 32 to as low as 10 bits
for different operations of the algorithm. Medeiros et al. (2013)
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investigate the use of fixed-point precision for RTM and conclude
that 15 bits are required to keep an acceptable signal-to-noise ratio.
Finally, Clapp et al. (2010) list bit-width reduction as a possible
optimization strategy for RTM.
In this paper, we investigate the use of FP16 for elastic wave propa-

gation in the context of FWI and RTM. We first review the basics of
seismic modeling and inversion with the FDTD method. We then
explain the main caveats of using the half-precision standard for solv-
ing the isotropic wave equation and its adjoint and propose a way to
circumvent those issues. We present an implementation of this algo-
rithm in the CUDA language and benchmark it in terms of perfor-
mance and accuracy. Finally, we compare the results of FP32 and
FP16 for FWI and RTM on the Marmousi model.

THEORY

The wave equation

We are interested in solving the wave equation describing the
propagation of mechanical waves in a heterogeneous solid for the
purpose of imaging and inversion. Without loss of generality, here
we adopt the isotropic elastic wave equation in the velocity-stress
formulation:

∂tvi −
1

ρ
∂jσij ¼ 0;

∂tσij − ðM − 2μÞ∂kvkδij − μð∂jvi þ ∂ivjÞ ¼ sij; (1)

in which viðx; tÞ are the particle velocities in direction i, σijðx; tÞ are
the stress components, sijðx; tÞ are the source terms, and ρðxÞ,
MðxÞ, and μðxÞ are the material parameters, respectively, the den-
sity, the P-wave modulus, and the S-wave modulus. The velocity-
stress formulation can be solved efficiently by the FDTD method on
a staggered grid (Virieux, 1986). For the sake of simplicity, we will
discuss the 1D wave equation, which exhibits the main difficulties
of using half-precision for seismic modeling. Later numerical re-
sults will be performed in two dimensions and three dimensions,
for which the explicit FD solutions are given by Virieux (1986)
and Graves (1996), respectively. In one dimension, we have

v−1∕2x ¼0;

σ0xþ1∕2¼0;

vtþ1∕2
x ¼vt−1∕2x þΔtρ−1x Dþσtxþ1∕2;

σtþ1
xþ1∕2¼σtxþ1∕2þΔtMxþ1∕2D−vtþ1∕2

x þΔtstxþ1∕2: (2)

The grids are staggered in space and time. The superscript t and
subscript x specify the position of a grid point on the time and space
axis, respectively. Staggered grid points are indicated by noninteger
indices, for example, xþ 1∕2. Finally, we left the spatial difference
operators D� arbitrary for brevity. The solution is obtained by
updating the grid positions in the classic leapfrog approach, that
is, velocities and stresses are updated sequentially.

Imaging and inversion

The goal of imaging is to recover the variations of the earth
parameters or the structure of the subsurface, whereas the goal of
inversion is to recover the true magnitude of those parameters. In

other words, we want to recover ρ,M, and/or μ given measurements
dobs, which can be particle velocities vi or pressure. To do so, we
define an optimization problem, with the objective of minimizing
the difference between the observed and modeled wavefields:

minimize
ρ;M

X ¼ 1
2

P
s

P
t
ðds;tmod − ds;tobsÞ2

subject to equation1;
(3)

where ds;tmod and d
s;t
obs are, respectively, the modeled and observed data

for source s at time t. FWI is a (discretized) partial differential equa-
tion (PDE) constrained optimization problem that is usually solved
with local gradient-based optimization algorithms. The computation
of the gradient is performed efficiently by the adjoint state method,
which necessitates solving two discretized systems: the discretized
forward wave equation (e.g., equation 2) and its adjoint. The adjoint
equation has the same complexity as the forward equation. For ex-
ample, the adjoint of the 1D wave equation for pressure measure-
ments (pobs) is

~σTþ1
x ¼ 0;

~vTþ1∕2
xþ1∕2 ¼ 0;

~σtx ¼ ~σtþ1
x − ΔtDþðMxþ1∕2 ~v

tþ1∕2
xþ1∕2Þ þ rtx;

~vt−1∕2xþ1∕2 ¼ ~vtþ1∕2
xþ1∕2 − ΔtD−ðρ−1x ~σtxÞ: (4)

Note that time propagation is reversed in time and begins at the final
time T. The adjoint source r corresponds to the residual r ¼ pmod −
pobs in the case of FWI based on the l2 norm and corresponds to the
recorded data r ¼ pobs in the case of RTM. Note that equations 2 and
4 have the same structure, have the same order of accuracy, and thus
have the same sensitivity to numerical noise.
Once the solution of the forward and the adjoint PDEs is com-

puted, the gradient (or the image for migration) can be computed
with an imaging condition that relies on the crosscorrelation in time
of both solutions. For example, the gradient of the 1D wave equa-
tion with respect to M is

∇MX x ¼ Δt
X

s

X

t

~vs;tþ1∕2
xþ1∕2 D−vs;tþ1∕2

x : (5)

Specifics of this correlation depend on the particular imaging condi-
tion, the parameterization, and the cost function. In all cases, the gra-
dient is the sum of thousands of samples and hundreds of sources.
Any noncoherent noise contained in the solution of the forward or the
adjoint will be attenuated by this stacking operation. It is thus con-
ceivable to reduce the accuracy of the PDE solution without affecting
too much the final image or search direction, as long as the noise it
produces does not bias the solution; that is, it does not introduce
numerical dispersion.

Floating-point precision

The numerical solution of the FD approximation of the wave equa-
tion is usually computed with a floating-point representation of real
numbers. In modern computers, floating-point numbers usually fol-
low the IEEE 754 standard (Zuras et al., 2008). A floating-point rep-
resentation is comprised of a fixed number of bits, divided into three
categories: the sign bit, the exponent bits e, and the significant (or
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mantissa) bits p. The bit layout for the IEEE half-precision format is
presented in Figure 1. Any real number can be approximated by a
floating-point representation �p × 2e, in which the significant p
and exponent e are integers of infinite precision. However, with in-
tegers containing a finite number of bits, most real numbers can only
be approximated. The error between the true value and its finite float-
ing-point representation is caused by three phenomena:

1) Rounding errors: A real number can lie between two exactly rep-
resentable numbers of a particular floating-point format; that is, it
needs more digits than can be contained in the significant. The
number must then be rounded to one or the other.

2) Overflow: The maximum integer representable by the exponent
bits emax constrains the maximum value of a floating-point for-
mat, given by ð2 − 21−pÞ × 2emax. Overflow happens when a
number exceeds this value.

3) Underflow: On the other end of the spectrum, the minimum
value that can be represented by a normal number is given
by 1 × 2emin, where emin is the smallest value of the exponent.
Below this value, 0 or the nearest subnormal number is as-
signed.

The precision of the half, single, and double IEEE standards is
presented in Table 1. As can be seen, halving the number of bits
more or less halves the number of significant decimals — the pre-
cision is proportional to the number of bits of the significant. How-
ever, the dynamic range drastically decreases between single and
half-precision, which is due to the exponential relationship between
dynamic range and the exponent bits. When using half-precision, all
of the computed values must stay within a very narrow range, which
may be impossible for many algorithms.

METHODS

Scaling the wave equation

Solving the wave equation by the FDTDmethod in half-precision
requires careful considerations. In fact, naively converting every
variable from single to half in the modeling algorithms cannot work.
To illustrate this point, we use the 1D wave equation (equation 2).
Consider the material parameters: The velocity updates require
stress derivatives to be multiplied by Δtρ−1, and the stress updates
require velocity derivatives to be multiplied by ΔtM. However, the
scales of those terms are problematic. Take ρ ¼ 2000 kg∕m3,
VP ¼ 3500 m∕s, and Δt ¼ 10−4s, very reasonable values. Then,
ΔtM ¼ 2;450;000, which is much larger than 65,504, the maxi-
mum FP16 value. Similarly, Δtρ−1 ¼ 5 × 10−8, which is much
smaller than the smallest normal number 6.1 × 10−5. It is thus
impossible to compute directly the FD solution of the elastic wave
equation in FP16.
To solve this problem, we propose to rescale equations 2 and 4,

so that each term is normalized around unity. We first define three
scaling factors:

ev ¼ −log2ðΔtmaxðMÞÞ;
es ¼ −log2ðΔtmaxðsÞÞ;
er ¼ −log2ðΔtmaxðrÞÞ: (6)

The first factor ev takes the maximum value of the heterogeneous
P-wave modulus, which is the highest numerical value taken by any

material parameters for the elastic wave equation. The two other
factors depend on the maximum value of the source signal and
of the residuals, respectively. In the code, the scaling happens before
computations. To do so, we pack the material parameters into scaled
coefficients and we define the normalized sources and residuals:

ax ¼ 2−evΔtρ−1x ;

bxþ1∕2 ¼ 2evΔtMxþ1∕2;

s 0txþ1∕2 ¼ 2esΔtstxþ1∕2;

r 0txþ1∕2 ¼ 2erΔtrtxþ1∕2: (7)

We can solve the transformed forward PDE of equation 2:

v 0tþ1∕2
x ¼ v 0t−1∕2

x þ axDþσ 0t
xþ1∕2;

σ 0tþ1
xþ1∕2 ¼ σ 0t

xþ1∕2 þ bxþ1∕2D−v 0tþ1∕2
x þ s 0txþ1∕2; (8)

and the transformed adjoint PDE:

~σ 0t
x ¼ ~σ 0tþ1

x −Dþðbxþ1∕2
~v 0tþ1∕2
xþ1∕2Þ þ r 0tx ;

~v 0t−1∕2
xþ1∕2 ¼ ~v 0tþ1∕2

xþ1∕2 −D−ðax ~σ 0t
xÞ: (9)

The primes indicate that the variables are scaled. Using the linearity
of the wave equation with respect to sources, the original solution to
the unscaled PDEs can be recovered by rescaling the velocities and
the stresses:

v ¼ 2ev−esv 0;

σ ¼ 2−esσ 0;

~v ¼ 2ev−er ~v 0;

~σ ¼ 2−erσ 0: (10)

This must also be applied to the gradient expression. Equation 5
then becomes

∇MX x ¼ 22ev−es−erΔt
X

s

X

t

~v 0s;tþ1∕2
xþ1∕2 D−v 0s;tþ1∕2

x : (11)

Figure 1. Bit description of the IEEE half-precision standard.

Table 1. IEEE floating-point formats and their precision.

Format Bits Min Max Decimals

Half 16 ∼6.1 × 10−5 65,504 ∼3.3
Single 32 ∼2.2 × 10−38 ∼3.4 × 1038 ∼7.2
Double 64 ∼10−308 ∼10308 ∼15.8
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Observe that the scaled parameters a and b now have magnitudes
commensurate to the dynamic range of half-precision. Using the
same values as before (ρ ¼ 2000kg∕m3, VP ¼ 3500 m∕s, and
Δt ¼ 10−4 s), a ¼ 0.1225 and b ¼ 1 for spatially constant param-
eters. Scaling the sources and the adjoint sources further guarantees
that σ and v will stay within the range of half-precision. The scaling
approach is directly applicable in two dimensions and three dimen-
sions, for the elastic equation (equation 1). In that case, a scaled
parameter for μ, c ¼ 2evΔtμ is also required.
Algorithm 1 summarizes the half-precision scaling strategy.

Notice that the scalers are simple constants and that the scaled
parameters are computed once for all sources (lines 2 and 3). The
computation overhead of this operation is thus minimal. Base 2 scal-
ing allows us to preserve the accuracy of the scaled values because
this only modifies the exponent bits of the floating-point represen-
tation, leaving the significant intact. Using the precomputed scaled
parameters, time stepping (line 4) and adjoint time stepping (line
12) involve the same number of operations as the unscaled PDEs.
Finally, descaling is required to produce the right output in the form
of the computed wavefield (line 7) or the gradient (line 14). In short,
by scaling the parameters before computation then descaling the
solution, the elastic wave equation can be solved by FD in FP16
precision.

RESULTS

We have implemented the scaled modeling algorithm in CUDA,
which allows computations on Nvidia GPUs. Our choice is moti-
vated by the recent support on the latest GPU models of half-pre-
cision storage and arithmetic. A particularity of working in half-
precision with Nvidia’s GPUs is that reading/writing from global
memory and arithmetic operations should be carried out on vector
types (half2) to reach the full throughput attainable with FP16. To
do so, we divided the number of threads in the fast dimension (z) by
two, assigning to each thread the update of two consecutive grid
points in z. This strategy is similar to Ho and Wong (2017). For
further technical details, we refer the reader to our code, which is
accessible through GitHub.

Performance

Conversion from FP16 to FP32 leads directly to a reduction of
memory consumption by half. On its own, this is a significant im-
provement, considering the enormous memory requirements of 3D
FWI. However, the reduced precision of FP16 over FP32 is only
acceptable if it also comes with a significant reduction in runtime.
We here quantify the gain in performance by comparing three differ-
ent versions of our code: (1) the baseline FP32 version, in which all
the operations are performed in FP32, (2) the FP16 IO version,
which reads material parameters and seismic variables in half-pre-
cision from global to shared memory, converts to floats, computes
the update, converts back to half-precision, and writes the updated
values to global memory, and (3) the FP16 COMP version, which
performs every operation in half-precision (storage and arithmetic).
The three versions are identical and use preprocessor directives to
change between half and float types.
To compute the acceleration of our different implementations, we

measured the time required for time stepping (line 4 of algorithm 1).
The acceleration is defined as the ratio between runtime in FP32 and
runtime for the FP16 versions. We measured runtimes for 2D square
and 3D cubic models, with edges between 2048 and 7744 points,
every 64 points in two dimensions, and edges between 256 and 544
points every eight points in three dimensions. For each size, three shots
with 1000 time steps were computed. This measure was performed for
different Nvidia GPU models: the Tesla K40, the Tesla M40, only
supporting half-precision storage, and Tesla P100 and the Tesla
V100, supporting full half-precision reading/writing and arithmetic.
The average acceleration of all model sizes along their standard

deviation is presented in Figure 2. The acceleration of FP16 IO is

Algorithm 1. Half-precision seismic modeling and imaging.

1: Inputs: ρ, VP, VS, s, dobs
2: Compute scalers ev, es with equation 6

3: Compute scaled parameters a, b, c, s 0 with equation 7

4: Time stepping with equation 8, storing d 0
mod

5: Obtain dmod by rescaling d 0
mod with equation 11

6: if modeling only then

7: Output dmod

8: else

9: Compute the adjoint source, that is, r ¼ dmod − dobs
10: Compute the scaler er with equation 6

11: Compute the scaled residuals r 0 with equation 7

12: Adjoint time stepping with equation 9

13: Compute the gradient or image (equation 11)

14: Output ∇X (or the image)

Figure 2. Acceleration obtained by using half-precision over single
precision for different GPU architectures. Uncertainty bars indicate
± a standard deviation observed over all model sizes.
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Figure 3. Comparison between modeling with FP16 and FP32 for the elastic Marmousi II model: (a) the VP velocity, (b) the FP32 shot gather,
(c) the error of FP16 IO, (d) of FP16 COMP, (e) the error between FP32 modeling with the Taylor and Holberg coefficients, and the error
between FP32 with models truncated to (f) FP16 and FP16 IO and (g) FP1632.
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Figure 4. Comparison between modeling with FP16 and FP32 for the 2004 BP velocity benchmark model: (a) the VP velocity, (b) the
FP32 shot gather, (c) the error of FP16 IO, (d) of FP16 COMP, (e) the error between FP32 modeling with the Taylor and Holberg coefficients,
and the error between FP32 with models truncated to (f) FP16 and FP16 IO and (g) FP16 COMP.
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between 1.7× up to over 2×, in two dimensions and three dimen-
sions. In all cases, this is very near the expected 2× speedup attain-
able when FP16 storage and arithmetic are enabled. With the P100
and V100 that support FP16 arithmetic, the added gain of FP16
arithmetic is between 5% and 15%. This highlights the fact that FD
kernels are highly bandwidth limited, meaning that the time to read
and write from/to global memory is much larger than the time
required by arithmetic operations. FP16 computation is certainly
useful; however, older models without this feature can greatly ben-
efit from using half-precision for storage.

Solution accuracy

Using half-precision leads to a substantial gain in performance,
but how accurate is the solution? To answer this question, we mod-
eled seismic data for different benchmark models. As 2D and 3D
wave propagation differs by how amplitude decreases with distance,
we separated tests for the 2D and 3D implementations. In two di-
mensions, we tested benchmark models commonly used in explo-
ration geophysics: the elastic Marmousi II model (Martin et al.,
2006) and the 2004 BP velocity benchmark (Billette and Brands-
berg-Dahl, 2005). The elastic Marmousi model allows us to study
the accuracy of elastic effects in a model with moderately large
velocity contrasts and the BP model is used to test the effect of very
large velocity contrasts and very long offsets. In three dimensions,
we present a comparison with the analytical solution and we test the
3D SEG/EAGE salt benchmark model (Aminzadeh et al., 1995).

2D propagation

The elastic Marmousi VP model is shown in Figure 3a. The
reader is referred to Martin et al. (2006) for VS and ρ, which are
structurally similar. Marmousi II is 17 km long and 3.5 km deep,
allowing very long propagation distance to be studied. The model
also contains quite large velocity variations — the maximum and
minimum P-wave velocities are 4.7 and 1.03 km∕s, respectively.
The wide range of VP∕VS ratios, between 1.58 and 5.47, allows us
to test the accuracy of elastic effects. We simulated a high-frequency
survey by using a 40 Hz Ricker wavelet as the
source. To prevent dispersion with such a
high-frequency content, the grid spacing was
set at 1.25 m. To respect stability conditions,
the time step was chosen as 0.137 ms. Note that
we did not include a free surface and we put ab-
sorbing layers (Cerjan et al., 1985) on all sides of
the model.
The BP model is shown in Figure 4a. As it is

acoustic, we set μ to 0 GPa in our elastic code. The
BP model contains many salt bodies exhibiting
very large velocity contrasts. The minimum and
maximum velocities are 1.429 and 4.790 km∕s,
respectively. Its large size (67.4 km long ×
11.9 km thick) allows for the very long propaga-
tion distance. Here, we used a 10 Hz source, with
a 6.25 m grid spacing and a 0.57 ms time step.
As a baseline, we use the FP32 solution com-

puted with fourth-order Taylor FD coefficients.
The seismograms are shown in Figures 3b
(Marmousi II) and 4b (BP model). Traces were
clipped at 0.5% of the maximum value of the

gather to highlight faint reflections and refractions, which are of
interest. The Marmousi shot gather exhibits numerous reflections
between 0.8 and 3 s and clear refractions for distances over
12 km. The BP model shows numerous refractions and diffractions
at short offsets and complex head wave behaviors at larger offsets.
Figures 3c–3g and 4c–4g show the error between the FP32 shot

gather and different modeling precision. On all error figures, we
used the same clipping as the FP32 gathers, multiplied by 10 (Mar-
mousi II) and 50 (BP) to highlight the pattern of the numerical error.
The error obtained with the FP16 IO version is shown in Fig-

ures 3c and 4c for Marmousi and BP models, respectively. For both
models, two different components can be observed: a background
noncoherent noise with an amplitude that decreases in time and a
coherent noise correlated with the main arrivals contained in the
shot gathers. The coherent noise is concerning because it could sum
positively during imaging and change the depth to reflectors or their
amplitude. However, it has a very low amplitude, which represents
only 0.49% (Marmousi II) and 0.035% (BP model) of the total en-
ergy contained in the shot gathers. Thus, its impact on the gradient or
the migrated section should be minimal. The coherent noise of
the FP16 COMP version is more energetic than for the FP16 IO
version and is visible for most events found in the shot gathers
(Figures 3d and 4d). Furthermore, the error is larger for longer propa-
gation distances; that is, the error correlated with refraction events is
more pronounced. The error remains very low, though, with 0.37%
(Marmousi II) and 0.030% (BP model) of the total energy.
To put into perspective the noise produced by the FP16 kernels,

we show in Figures 3e and 4e the difference between seismograms
computed with two different sets of fourth-order FD coefficients:
the baseline Taylor coefficients (9/8 and −1∕24) and the Holberg
coefficients with a maximum group velocity error of 0.1% (1.1382
and −0.046414). Computations are performed with FP32 in both
cases. The coherent noise has a much stronger amplitude than either
version of our FP16 kernels, but it remains still quite low for
imaging purposes (note that the errors are magnified by 10× and
50× in Figures 3 and 4). The impact of using FP16 can thus be

a) d)

b) e)

c) f)

Figure 5. Comparison to the analytical solution for a 3D homogeneous elastic space.
Results for (a) FP32, (b) for FP16 IO, and (c) for FP16 COMP are shown in red, the
analytical solution is in black, and the error multiplied by 10 is in green. Panels (d-f)
show the amplitude spectra of the numerical solution and its error for FP32, FP16 IO,
and FP16 COMP, respectively.
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Figure 6. Comparison between modeling with FP16 and FP32 for the 3D SEG-EAGE salt benchmark model: (a) the VP velocity, (b) the
FP32 shot gather, (c) the error of FP16 IO, (d) of FP16 COMP, (e) the error between FP32 modeling with 12-point and 8-point Holberg
coefficients, and the error between FP32 with models truncated to (f) FP16 and FP16 IO and (g) FP16 COMP.
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considered quite small, given that both types of FD coefficients are
deemed accurate enough for seismic imaging.
Finally, to better understand the source of the error, we computed

the solution for a modified Marmousi model, obtained by truncating
parameters a, b, and c to the nearest FP16 number. The error is
shown in Figures 3f and 4f for FP16 IO and Figures 3g and 4g
for FP16 COMP. In the case of FP16 IO, most of the coherent error
is no longer visible, showing that it is controlled mostly by the
rather small truncation error of the material parameters. Such trun-
cation errors are, however, much smaller than the accuracy of the
models used in imaging or inversion and should thus be of no prac-
tical consequence. In the case of FP16 COMP, the coherent energy
is reduced, but still visible. Indeed, in this case, the dispersion re-
lation will be affected by the reduced accuracy of the FD operator.
For instance, the fourth-order Taylor coefficients are (1.125 and
−0.041656) in FP16 and (1.125 and −0.041666668) in FP32. The
small difference of the second coefficient will affect the numerical
phase velocity, thus creating coherent errors between both solutions.
Such errors, as shown earlier, remain rather small compared to using
different FD coefficients.

3D propagation

The analytical solution for a point force in the z-direction for
an elastic 3D homogeneous space is given by Pilant (2012). We
computed the solution for VP ¼ 3500 m∕s, VS ¼ 2000 m∕s, and
ρ ¼ 2000 kg∕m3. The numerical solution was obtained with a 6 m
grid spacing and a 0.6 ms time step, for a source with a peak fre-
quency of 20 Hz. To be able to compute the solution for the largest
offset possible with a 3D model fitting in the memory of a single
GPU, we used for this test a 12-point stencil with Holberg coeffi-
cients for a maximum group velocity error of 0.1%. The grid size

was 700 × 700 × 700 with a 112 point thick absorbing boundary.
The largest offset measured is thus 2558 m (or 40× the P-wave wave-
length at 40 Hz). The number of grid points per wavelength is 14 at
40 Hz, well over the 2.91 value needed to keep the dispersion at less
than 0.1%. The large absorbing boundary width and the large number
of grid points per wavelength were used to obtain the most accurate
numerical solution possible for this FD stencil.
Figure 5 shows the comparison of the analytical solution (the

black lines), the numerical solution of three different versions of our
code (the red lines), and the error (the green line). Note that the error
has been magnified by 10 for the traces in the time domain
(Figure 5a–5c). The traces shown are the particle velocity in the
z-direction vz, for an offset of 2558 m, on which the P-wave arrival
is dominant.
Figure 5a shows the numerical results for the FP32 version of the

code. The error represents 0.32% of the energy of the trace, which
can be attributed to dispersion and the imperfect absorbing boun-
dary. Such an error represents the degree of accuracy attainable with
a standard FDTD code using a high-order stencil and a 32-bit float-
ing-point representation. Figure 5d shows the amplitude spectrum
of the same trace, the green line shows again the spectrum of the
error. The amplitude of the error is smaller than the amplitude of the
signal for frequencies between 2 and 50 Hz. Outside those frequen-
cies, the solution loses its accuracy, mostly because of dispersion
and of the signal truncation caused by the finite length of the signal.
Figure 5b and 5e shows the numerical results for the FP16 IO

version of the code. The error contains a part that is correlated with
the main arrival, which is similar to and of the same amplitude as the
FP32 version. Hence, using FP16 only for storage does not seem to
introduce further dispersion. The error contains an additional com-
ponent compared to the FP32 solution: a random error in the time
domain that is present after the first P-wave arrival. This error is

Figure 7. Inversion for the Marmousi model: (a) true VP model, (b) initial model, (c) inverted model in FP32, and (d) inverted model with
FP16 COMP. The insets are virtual boreholes located at a distance of 7 km, the blue lines represent the true model, and the orange lines
represent the inverted models.
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caused by the truncation error associated with the narrow dynamic
range of half-precision, which propagates along the desired signal.
The amplitude spectrum in Figure 5e shows that this random noise
propagates at larger frequencies with an amplitude commensurate
with the smallest FP16 normal number of 2−14. Comparing Fig-
ure 5d and 5e, we see that the bandwidth where the solution is ac-
curate is largely similar between FP16 IO and FP32, with the lowest
accurate frequency slightly larger for FP16 IO at approximately
3 Hz instead of 2 Hz. The difference between the FP32 and FP16
IO solutions is 0.21% of the energy of the trace, below the error
introduced by the FDTD stencil.
Figure 5c and 5f shows the numerical results for the FP16 COMP

version of the code. As for the FP16 IO version, two components
of the noise can be seen: one attributable to the accuracy of the FDTD
stencil and the other attributable to the limited accuracy of half-
precision. However, computations in half-precision introduced
additional noises in the lower part of the spectrum. The lower limit
of the usable bandwidth of the solution is increased to 6 Hz,
but the higher limit remains at 50 Hz. The error between FP16 COMP
and FP32 solution is now 1.03% of the total energy. The accuracy
of the solution is reduced significantly by computing in FP16, but
it may still be high enough for migration and inversion in most
cases.

Finally, we computed a seismic shot for the SEG-EAGE salt model.
The seismic gather is shown in Figure 6. We used the same 12-point
stencil as for the analytic solution. Once again, we tried to reduce
dispersion to a minimum, with a grid spacing of 20 m, a source peak
frequency of 9 Hz, leading to four grid points per wavelength at 18 Hz
for a minimum velocity of 1500 m∕s. As shown in Figures 3 and 4,
Figure 6a shows the shot gather obtained with the FP32 version, and
Figure 6b and 6c shows the error between FP32 and FP16 IO and
FP16 COMP, respectively. Note again that the errors have been mag-
nified by 50. The same error patterns as in 2D propagation are ob-
served: a coherent noise component following the main arrivals and
a random noise component introduced by the limited dynamic range of
FP16. As before, when the velocities are converted to the nearest rep-
resentable FP16 value, the coherent error mostly disappears for FP16
IO, as can be seen in Figure 6f, confirming that storing the wavefields
in FP16 does not introduce further numerical dispersion. Computing
with FP16 does introduce some dispersion, as seen in Figure 6f. The
energy of this error is even lower in three dimensions than in two di-
mensions, with 0.0018% and 0.0012% of the total energy for FP16 IO
and FP16 COMP, respectively. Figure 6e compares those errors to the
error between a 12-point and an 8-point stencil. Coherent noise is
present in this gather and has a magnitude comparable to the FP16
versions of the code. This confirms that the FP16 solutions in three

Figure 8. RTM migration for the Marmousi model with the different versions of the code: (a) FP32, (b) FP16 IO, and (c) FP16 COMP. The
errors between FP32 and FP16 IO and FP16 COMP, multiplied by 75, are shown in (d and e), respectively.
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dimensions have a level of accuracy that is similar to variations caused
by using different stencils. Because the 12-point and 8-point stencils
are deemed accurate enough for inversion and migration, the FP16
versions should thus be usable.

Impact on FWI and RTM

As a final test, we performed FWI and RTM on the original Mar-
mousi benchmark model (Versteeg, 1994). The goal is to determine
if the quality of the inverted model and image is adversely affected
by noises introduced by FP16 modeling. To do so, a reference data
set was computed with the FP32 code. FWI and RTM were carried
out with the different versions of our code. Any changes in the in-
verted models should be caused by the reduced precision of FP16.
The data set for FWI contains 283 shots (one every two grid cells),

each containing 283 receivers. The source is a Ricker wavelet with a
central frequency of 7.5 Hz. All inversion tests were carried out with
the exact same methodology. The starting model corresponds to the
linear trend in depth of the true model (Figure 7a and 7b). We used
stochastic limited-memory Broyden–Fletcher–Goldfarb–Shanno al-
gorithm (L-BFGS) (Fabien-Ouellet et al., 2017a), in which each iter-
ation uses a random subset of the sources to compute the gradient. To
be able to compare different inversions results, the random subsets
schedules are the same for each code version. In this experiment,
six sources out of the 283 were used at each iteration. The inversion
follows the frequency continuation strategy of Bunks et al. (1995): 14
frequency bands between 1.2 and 17 Hz were extracted via a Butter-
worth band-pass filter and inverted sequentially. We performed 40
iterations per frequency band, and we used the resulting model as a
starting model for the next frequency band. Only VP was inverted,
and we kept the density and source signature fixed and known.
The results of the inversion are shown in Figure 7c and 7d for

FP32 and FP16 COMP versions, respectively. The inversion has
converged to a very accurate representation of the true model, for
the full depth of the model. Inaccuracies on both sides of the model
are caused by the acquisition footprint and are to be expected. As
can be visually appraised, the FP32 and FP16 COMP inversion con-
verged to very similar models. Some very minor differences exist:
The root-mean-square error (rms error) between the true and the
FP32 inverted models is 391 m∕s, whereas the rms error between
the FP32 and FP16 COMP inverted models is 61 m∕s (43 m∕s for
FP16 IO). Thus, the error produced by FP16 usage is much smaller
than the error caused by inversion, and, in this case, FWI can be
performed either in FP32 or FP16.
RTM was also applied to the acoustic Marmousi model. In this case,

the source wavelet was a 25 Hz Ricker wavelet. Using a smoothed
version of the true model, 39 shots were migrated. We used a conven-
tional RTM approach based on Laplace filters and a correlation imaging
condition. Migrated sections obtained with the FP32, the FP16 IO, and
FP16 COMP codes are shown in Figure 8a–8c, respectively. The three
migrated sections are visually identical. Figure 8d and 8e shows the error
between the FP32 and the FP16 versions, magnified by 75, to see the
error pattern. The largest errors are found near the sources and receivers
on the top of the model, where RTM results are inaccurate. The error is
correlated with reflection events, although magnification is required to
see it on the migrated sections. The deeper portion seems somewhat
more affected, which is probably caused by the phase velocity mismatch
produced by converting the velocity model to FP16. The error remains
very small in both cases (0.05% of the energy for FP16 IO and 0.13%
for FP16 COMP), indicating that FP16 is a viable option for migration.

CONCLUSION

We have shown that it is possible to use half-precision floating-
point numbers to solve the isotropic elastic wave equation with the
FDTD method. We have further shown that the solution remains
accurate enough for FWI and RTM in realistic scenarios, in two
dimensions and three dimensions. Note that FP16 usage can be
switched on and off easily, in cases requiring higher accuracy. Ad-
vantages of using FP16 are (1) a reduction by a factor of two of
memory usage and (2) an acceleration by a factor between 1.7
and two of the code execution on recent GPUs. The acceleration
is mainly caused by the twofold increase of the number of cell el-
ements per cycle that can be accessed in memory, our FD code
being memory bound. This means a significant acceleration can
be attained even with older GPU models that only support FP16
reading and writing from/to memory. Even CPU implementations
should reap benefits from FP16 because they are too memory
bound.
However, the use of FP16 with the FDTD method required exten-

sive rewriting of our GPU kernel in CUDA, which is a minor incon-
venience. Most importantly, the wave equation has to be rescaled so
that operations involve terms respecting the reduced dynamic range
of half-precision floating-point numbers. This scaling is performed
once before actual computations happen and has a negligible impact
on execution time. Still, great care must be taken to prevent any cata-
strophic overflow, which happens too easily when working in FP16.
Even without overflow, FP16 precision may not be enough to com-
pute an accurate solution of other PDEs, especially if the order of the
accuracy of the numerical scheme is low. This is the case for common
convolutional perfectly matched layer implementations or some
FDTD solutions of the viscoelastic wave equation.
Finally, the possibility of usefully solving the wave equation in

reduced precision opens the way to benefit from more sophisticated
accelerators that are now being produced for FP16 computations,
such as Nvidia’s Tensorcores. As chip makers shift their priorities
to follow the burgeoning machine learning industry, a major com-
puting evolution is expected to take the form of FP16 accelerators.
This work shows that the seismic community can benefit from such
advancements, albeit with some effort on rethinking existing codes.
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