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A B S T R A C T

Full Waveform Inversion (FWI) aims at recovering the elastic parameters of the Earth by matching recordings
of the ground motion with the direct solution of the wave equation. Modeling the wave propagation for realistic
scenarios is computationally intensive, which limits the applicability of FWI. The current hardware evolution
brings increasing parallel computing power that can speed up the computations in FWI. However, to take
advantage of the diversity of parallel architectures presently available, new programming approaches are
required. In this work, we explore the use of OpenCL to develop a portable code that can take advantage of the
many parallel processor architectures now available. We present a program called SeisCL for 2D and 3D
viscoelastic FWI in the time domain. The code computes the forward and adjoint wavefields using finite-
difference and outputs the gradient of the misfit function given by the adjoint state method. To demonstrate the
code portability on different architectures, the performance of SeisCL is tested on three different devices: Intel
CPUs, NVidia GPUs and Intel Xeon PHI. Results show that the use of GPUs with OpenCL can speed up the
computations by nearly two orders of magnitudes over a single threaded application on the CPU. Although
OpenCL allows code portability, we show that some device-specific optimization is still required to get the best
performance out of a specific architecture. Using OpenCL in conjunction with MPI allows the domain
decomposition of large models on several devices located on different nodes of a cluster. For large enough
models, the speedup of the domain decomposition varies quasi-linearly with the number of devices. Finally, we
investigate two different approaches to compute the gradient by the adjoint state method and show the
significant advantages of using OpenCL for FWI.

1. Introduction

In recent years, parallel computing has become ubiquitous due to a
conjunction of both hardware and software availability. Manifestations
are seen at all scales, from high-performance computing with the use of
large clusters, to mobile devices such as smartphones that are built
with multicore Central Processing Units (CPU) (Abdullah and Al-
Hafidh, 2013). Graphics processing units (GPU) bring this trend to
the next level, packing now up to several thousand cores in a single
device. Scientific simulations have benefited from this technology
through general-purpose processing on graphics processing units
and, for certain applications, GPUs can speed up calculation over one
or two orders of magnitude over its CPU counterpart. This has caused a
surge in the use of GPUs in the scientific community (Nickolls and
Dally, 2010; Owens, et al., 2008), with applications ranging from
computational biology to large-scale astrophysics. Furthermore, GPUs
are increasingly used in large clusters (Zhe, et al., 2004), and now
several of the fastest supercomputers on earth integrate GPUs or

accelerators (Dongarra, et al., 2015).
Nevertheless, GPUs are not fit for all kinds of scientific computa-

tions (Vuduc, et al., 2010). Potential gains from adopting GPUs
should be studied carefully before implementation. In particular, the
algorithm should follow the logic of the single-program multiple-data
(SPMD) programming scheme, i.e. many elements are processed in
parallel with the same instructions. In geophysics, and more precisely
in the seismic community, GPU computing has been applied most
successfully in modeling wave propagation with Finite-Difference
Time-Domain (FDTD) schemes. Indeed, the finite-difference method
is well suited to GPUs because the solution is obtained by indepen-
dent computations on a regular grid of elements and follows closely
the SPMD model (Micikevicius, 2009). For example, Michéa and
Komatitsch (2010) show an acceleration by a factor between 20 and
60 between the single-core implementation of the FDTD elastic wave
propagation and a single GPU implementation. Okamoto (2011)
shows a 45 times speed-up with a single GPU implementation and
presents a multi-GPU implementation that successfully parallelizes
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the calculation, although with a sub-linear scaling. Both Rubio, et al.
(2014) and Weiss and Shragge (2013) present multi-GPU FDTD
programs for anisotropic elastic wave propagation that shows the
same unfavorable scaling behavior. Sharing computation through
domain decomposition can be problematic mainly because the
memory transfers between GPUs and between nodes are usually too
slow compared to the computation on GPUs. GPU computing has also
been applied successfully to the spectral element method
(Komatitsch, et al., 2010), the discontinuous Galerkin method (Mu,
et al., 2013) and reverse time migration (Abdelkhalek, et al., 2009),
among others.

Nearly all of the seismic modeling codes written for GPUs have
been implemented with the CUDA standard (Nvidia, 2007). CUDA
allows easy programming on NVidia GPUs; however a CUDA program
cannot run on devices other than NVidia GPUs. This can be proble-
matic and is a leap of faith that NVidia devices are and will remain the
most efficient devices for seismic modeling. Also, several clusters offer
different types of GPU or, at least, a mix of GPU devices. Hence, the
choice of CUDA limits the access to the full power of a cluster. On the
other hand, OpenCL (Stone, et al., 2010) is an open programming
standard capable of using most existing types of processors and is
supported by the majority of manufacturers like Intel, AMD and
Nvidia. On NVidia’ GPUs, OpenCL performance is comparable to
CUDA (Du, et al., 2012). Despite this advantage over CUDA, few
published seismic modeling codes use OpenCL: Iturrarán-Viveros and
Molero (2013) uses OpenCL in a 2.5D sonic seismic simulation, Kloc
and Danek (2013) uses OpenCL for Monte-Carlo full waveform
inversion and Molero and Iturrarán-Viveros (2013) perform 2D
anisotropic seismic simulations with OpenCL.

Efficient seismic modeling is more and more needed because of the
advent of full waveform inversion (FWI), see Virieux and Operto
(2009) for an extensive review. FWI is the process of recovering the
Earth (visco)-elastic parameters by directly comparing raw seismic
records to the solution of the wave equation (Tarantola, 1984). Its main
bottleneck is the numerical resolution of the wave equation that must
be repeatedly computed for hundreds if not thousands of shot points
for a typical survey. For large-scale multi-parameter waveform inver-
sion, FDTD remains the most plausible solution for seismic modeling
(Fichtner, 2011). In addition to forward seismic modeling, FWI
requires the computation of the misfit gradient. It can be obtained by
the adjoint state method (Plessix, 2006), which requires only an
additional forward modeling of the residuals. Hence, it is based on
the same modeling algorithm and the benefit of a faster FDTD code
would be twofold.

In this study, we investigate the use of OpenCL for modeling wave
propagation in the context of time domain FWI. The main objective is
to present a scalable, multi-device portable code for the resolution of
the 2D and 3D viscoelastic wave equation that can additionally
compute the gradient of the objective function used in FWI by the
adjoint state method. This paper does not go into specifics about the
inversion process, as the gradient calculated by our algorithm is
general and can be used in any gradient-based optimization ap-
proach. The seismic modeling program, called SeisCL, is available
under a GNU General Public License and is distributed over GitHub.
The paper is organized in three parts. First, the equations for
viscoelastic wave propagation, its finite-difference solution and the
adjoint state method for the calculation of the misfit gradient are
briefly discussed. In the second part, different algorithmic aspects of
the program are presented in detail. The last section presents
numerical results performed on clusters with nodes containing three
types of processors: Intel CPUs, NVidia GPUs and Intel Xeon PHI.
The numerical results show the validation of the code, the computa-
tional speedup over a single threaded implementation and the scaling
over several nodes.

2. Theory

2.1. Finite difference viscoelastic wave propagation

FWI requires the solution of the heterogeneous wave equation. In
this study, we consider the wave equation for an isotropic viscoelastic
medium in two and three dimensions. We adopt the velocity-stress
formulation in which the viscoelastic effects are modeled by L general-
ized standard linear solid (Liu, et al., 1976). The symbols used in this
article and their meaning are summarized in Table 1. The forward
problem in 3D is a set of 9+6L simultaneous equations with their
boundary conditions:
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v =0,i t=0 (1d)

σ =0,ij t=0 (1e)

r =0,ij t=0 (1f)

sn σ( ) =0,j ij (1g)

where Einstein summation convention is used over spatial indices i j k, ,
and the Maxwell body indice l. Eq. 1a comes from Newton’s second law
of motion. Eq. 1b is the stress-strain relationship for the generalized
standard linear solid model with L Maxwell bodies, which becomes the
generalized Hooke’s law when the attenuation is nil, i.e. when the
attenuation levels τs and τp are set to zero. Eq. 1c gives the variation of
the so-called memory variables. Finally, the last four equations are the
boundary conditions, respectively a quiescent past for velocities,
stresses and memory variables and a free surface. Those equations
are discussed in more details in several papers, see for example
Carcione, et al. (1988), Robertsson, et al. (1994) and Blanch, et al.
(1995).

The attenuation of seismic waves is often described by the quality
factor, defined as the ratio between the real and imaginary parts of the
seismic modulus (O'connell and Budiansky, 1978). In the case of a

Table 1
Symbols used in this article.

Symbol Meaning

xv t( , ) Particle velocity
xσ t( , ) Stress
xf t( , ) Source term
xr t( , ) Memory variable

∙ ⃖ Adjoint variable
xρ ( ) Density
xM ( ) P-wave modulus

xμ ( ) Shear modulus
xQ ( ) Quality factor
xτ ( )p P-wave attenuation level

xτ ( )s S-wave attenuation level
τσl Stress relaxation time of the lthMaxwell body
d Recorded particle velocities
T Recording time
Nt Number of time steps
J Cost function
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generalized standard linear solid, it is given by:

Q ω τ τ( , , ) =
1 + ∑

∑
.σl
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L ω τ τ

ω τ
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L ωτ τ

ω τ
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2 2 (2)

An arbitrary profile in frequency of the quality factor can be
obtained by a least squares minimization over the relaxation times τσl
and the attenuation level τ . Usually, two or three Maxwell bodies are
sufficient to obtain a relatively flat quality factor profile over the
frequency band of a typical seismic source (Bohlen, 2002). The two
variables involved have different influences on the frequency profile of
the quality factor: τσl controls the frequency peak location of the lth

Maxwell body, whereas τ controls the overall quality factor magnitude.
In FWI, an attenuation profile in frequency is usually imposed on the
whole domain (Askan, et al., 2007; Bai, et al., 2014; Malinowski, et al.,
2011) and it is the magnitude of this profile that is sought. For this
reason, τσl is taken here as a spatially constant variable that is fixed
before inversion, whereas τ is let to vary spatially and should be
updated through inversion.

To solve numerically equation 1, we use a finite-difference time-
domain approach similar to (Levander, 1988; Virieux, 1986). In time,
derivatives are approximated by finite-difference of order 2 on a
staggered grid, in which velocities are updated at integer time steps
Δt and stresses and memory variables are updated at half-time steps in
a classic leapfrog fashion. In space, the standard staggered grid is used.
An elementary cell of the standard staggered grid is shown in Fig. 1,
summarizing the location of each seismic variable. The forward Di+ and
backward Di− differential operators of order N2 are given by:

∑D f i Δx h f i n f i n( ) = 1 [ ( + ) − ( − + 1)],i
n
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n
+

=1 (3a)
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N

n
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=1 (3b)

where Δx is the spatial step and the hn coefficients are obtained by
Holberg’s method (Holberg, 1987) which reduces dispersion compared
to the Taylor coefficients. The choice of the forward or backward
operator obeys the following simple rule: in the update Eqs. (1a, 1b and
1c) of a variable “a”, to estimate the derivative of a variable “b”, the
forward operator is used if variable “b” is located before variable “a” in
the elementary cell (Fig. 1) along the derivative direction. The back-
ward operator is used otherwise. For example, the update formula for vx
is:
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The complete set of equations can be obtained with equations 1 and
3 and Fig. 1. The reader is referred to the work of Bohlen (2002) for the
complete list.

Finally, to emulate a semi-infinite half-space, artificial reflections
caused by the edge of the model must be minimized. For this purpose,
two types of absorbing boundaries are implemented: the convolutional
perfectly matched layer (CPML) (Roden and Gedney, 2000) as for-
mulated by Komatitsch and Martin (2007) for viscoelastic media and
the dissipative layer of (Cerjan, et al., 1985). On the top of the model, a
free surface condition is implemented by the imaging method of
(Levander, 1988).

2.2. Full waveform inversion

The goal of full waveform inversion is to estimate the elastic
parameters of the Earth based on a finite set of records of the ground
motion di, in the form of particle velocities or pressure. This is
performed by the minimization of a cost function. For example, the
conventional least-squares misfit function for particle velocity mea-
surements is:

S d S dJ ρ M μ τ τ v v( , , , , ) = 1
2 ( ( ) − ) ( ( ) − ),p s i i T i i (5)

where S (∙) is the restriction operator that samples the wavefield at the
recorders’ location in space and time. As 3D viscoelastic full waveform
inversion may involve billions of model parameters, the cost function is
usually minimized with a local gradient-based method. However, due
to the sheer size of the problem, the computation of the gradient by
finite difference is prohibitive. Lailly (1983) and Tarantola (1984) have
shown that the misfit gradient can be obtained by the cross-correlation
of the seismic wavefield with the residuals back propagated in time (see
Fichtner, et al. (2006) for a more recent development). This method,
called the adjoint state method, only requires one additional forward
modeling. Based on the method of (Plessix, 2006), it can be shown
(Fabien-Ouellet, et al., 2016) that the adjoint state equation for the
viscoelastic wave equation of equation 1 is given by:
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with t T t′= − . Comparing equations 1 and 6, we see that both sets of
equations are nearly identical, the only difference being the sign of the
spatial derivatives and the source terms (the terms involving the misfit
function derivative). Hence, the adjoint solution for the viscoelastic
wave equation can be computed with the same forward modeling code,

Fig. 1. An elementary cell showing the node location for each seismic variable.
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with the source term taken as the data residuals reversed in time and
with an opposite sign for the spatial derivatives. This allows using the
same modeling code for the forward and adjoint problem, with only
minor changes to store or recompute the forward and residual
wavefields. Once both wavefields are computed, the gradient can be
obtained by calculating their scalar product, noted here ∙, ∙ . The
misfit gradient for density, the P-wave modulus, the P-wave attenua-
tion level, the shear modulus and the S-wave attenuation level are given
respectively by:

J
ρ v v v v v v∂

∂ = , ∂ + , ∂ + , ∂ ,x t x y t y z t z
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where ∫R r dt←⎯⎯ = ← ′ijl
t

ijl0
′

, σ σ R′ = − ∑ij ij l ijl and Nd is the number of
dimensions (2 or 3). Coefficients c are given in the appendix. The
misfit gradients for the P-wave modulus M and the P-wave attenuation
level τp have the same structure and differ only by the coefficients that
weight the scalar products. The same relationship exists between μ and
τs.

In the time domain, the scalar product takes the form:

∫a t b t a t b t dt( ), ( ) = ( ) ( ) ,
T (8)

which is the zero-lag cross-correlation in time of the real-valued
functions xa ( ) and xb ( ). When discretized in time, it is the sum of
the product of each sample. Using Parseval's formula, the last equation
can also be expressed in the frequency domain:

∫a t b t π A ω B ω dω( ), ( ) = 1
2

*( ) ( ) ,
ω (9)

where A ω( ) and B ω( ) are the Fourier transform of the functions a t( )
and b t( ) and * indicates complex conjugation. The formulation in
frequency can be used to perform frequency domain FWI (Pratt and
Worthington, 1990) with a time-domain forward modeling code as
done by Nihei and Li (2007). The frequency components of the seismic
variables can be obtained with the discrete Fourier transform:

⎡
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⎦⎥∑A mΔf Δt a nΔt i πmn

N( )= ( )exp − 2 ,
n

N

t=0

−1t
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where a is the discrete function in time, A is the discrete function in the
Fourier domain, Δt is the time interval, Δf is the frequency interval and
m is the frequency label. The calculation of a frequency component with
the discrete Fourier transform involves the sum of all the time samples
weighted by a time varying function given by the complex exponential.
In the FDTD scheme, the running sum can be updated at each time
step for all or a selected number of frequencies (Furse, 2000). Because
FDTD must be oversampled to remain stable (CFL condition), the
discrete Fourier transform can be performed at a higher time interval
to mitigate its computational cost, e.g. several time steps can be
skipped in Eq. (10), up to the Nyquist frequency of the highest selected
frequency. Also, to save memory and reduce computing time, only a
handful of frequencies can be used during the inversion (Sirgue and
Pratt, 2004).

Once the gradient is computed, different algorithms can be used to
solve the inversion system, from the steepest descent to the full Newton
method (Virieux and Operto, 2009). This issue is not the focus of this
study. However, all of these local methods need at least the computa-
tion of the forward model and the misfit gradient, both of which are the
main computational bottlenecks. Hence, a faster forward/adjoint
program should benefit all of the local approaches of FWI.

2.3. Background on heterogeneous computing

Heterogeneous computing platforms have become the norm in the
high-performance computing industry. Clusters generally include
different kinds of processors (Dongarra, et al., 2015): the most
common being CPUs, GPUs and Many Integrated Core (MIC), also
known as accelerators. Those devices may possess different architec-
ture and usually codes written for one type of device is not compatible
with others. Writing a specific code for each type of processor can be
tedious and non-productive. One solution is given by OpenCL (Stone,
et al., 2010), an open standard cross-platform for parallel program-
ming. OpenCL allows the same code to use one or a combination of
processors available on a local machine. This portability is the main
strength of OpenCL, especially with the actual trend of massively
parallel processors. For the moment, it cannot be used for paralleliza-
tion on a cluster, but can be used in conjunction with MPI.

Even though OpenCL allows the same code to be compatible with
different devices, the programmer always has to make a choice with the
initial design because code optimization can be very different for CPUs,
GPUs or MICs architectures. The program presented in this study was
written for the GPU architecture, which is arguably the most efficient
type of processor available today for finite-difference algorithms. For a
good summary of the concepts of GPU computing applied to seismic
finite-difference, see (Michéa and Komatitsch, 2010). Essential ele-
ments to understand the rest of the article are presented in this section,
using the OpenCL nomenclature.

A GPU is a device designed to accelerate the creation and
manipulation of images, or large matrices, intended primarily for
output to a display. It is separated from the CPU (host) and usually
does not directly share memory. The set of instructions that can be
accomplished on a GPU is different than on the CPU, and classical
programming languages cannot be used. A popular application pro-
gramming interface for GPUs is CUDA (Nvidia, 2007). However, CUDA
is a closed standard owned by NVIDIA that can only be used with
Nvidia GPUs. It is the main reason why OpenCL was favored over
CUDA in this work.

In order to code efficiently for GPUs, it is important to understand
their architecture. The smallest unit of computation is a work item (a
thread in CUDA) and is executed by the processing elements (CUDA
cores in the NVidia nomenclature). A single device can contain
thousands of processing elements that execute the same control flow
(instructions) in parallel on different data in the single instruction,
multiple thread fashion. The processing elements are part of groups
that are called compute units (thread blocks in CUDA). In NVidia
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devices, the compute units contain 32 consecutive processing elements.
In OpenCL, the programmer sends the work items, organized into work
groups, to be computed by the processing elements of a compute unit,
located in a given device.

Several levels of memory exist in a GPU. This is schematized in
Fig. 2, in the context of a GPU cluster. First, each processing element
has its own register (private memory), a limited in size but very fast
memory. Second, inside each compute unit, threads share a low-latency
memory, called the local memory. This memory is small, usually in the
order of several kilobytes. The main memory, called global memory, is
shared between all processing elements and is the place where the
memory needed for the different kernels is located. Usually, this
memory is not cached and is very slow compared to the local or private
memory.

One of the most important aspects of GPU programming is the
access to the global memory. Depending on the memory access pattern,
read/write operations can be performed in a serial or a parallel fashion
by the compute units. Parallel (coalesced) memory access is possible
when a number of consecutive work items inside a work group
performing the same instructions are accessing consecutive memory
addresses. For most NVidia devices, consecutive work items, or what is
called a warp, can read 32 floats in a single instruction when memory
access is coalesced. With finite-difference codes, the number of
instructions performed between the read/write cycles in global memory
is fairly low, which means that kernels are bandwidth limited. The
memory access pattern is then one of the main areas that should be
targeted for optimization.

In practice, a program based on OpenCL is organized as follows,
regardless of the type of processor used. First, instructions are given to
the host to detect the available devices (GPUs, CPUs or accelerators)
and connect them in a single computing context. Once the context is
established, memory buffers used to transfer data between the host and
the devices must be created. Then, the kernels are loaded and compiled
for each device. This compilation is performed at runtime. The kernels
are pieces of code written in C that contain the instruction to be
computed on the devices. After that, the main part of the program can

be executed, in which several kernels and memory transfers occur,
managed on the host side by a queuing system. Finally, buffers must be
released before the end of the program. Several OpenCL instances can
be synchronized with the help of MPI, as shown in Fig. 2.

3. Program structure

This section describes the implementation of the finite-difference
algorithm for viscoelastic modeling and the calculation of the adjoint
wavefield in an OpenCL/MPI environment. The program contains
many kernels, and its simplified structure is shown in Algorithm 1.
This algorithm presents a typical gradient calculation over several
seismic shots, on a parallel cluster where each node contains several
devices. Its main features are discussed in the following sections.

Algorithm 1. Pseudo-code for the parallel computation of the
gradient with the adjoint state method.

Initialize MPI
Initialize OpenCL
Initialize model grid

1. for all groups in MPI do
2. for all shots in group do
3. for all nodes in group do
4. for all devices in node do
5. Initialize seismic grid ( ⃖⃖v , σ , r , v , σ , r ⃖i ij ij i ij ij)
6. Execute time stepping on shot
7. Compute residuals
8. Execute time stepping on residuals
9. Compute gradient
10. end for
11. end for
12. end for
13. end for

Fig. 2. OpenCL memory diagram used in conjunction with MPI in the context of a cluster, inspired by (Howes and Munshi, 2014).
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3.1. Node and device parallelism

In order to take advantage of large clusters, we use the MPI
interface to parallelize computations between the nodes of a cluster.
A popular approach to parallelizing finite-difference seismic modeling
is domain decomposition (Mattson, et al., 2004). It consists of dividing
the model grid into subdomains that can reside on different machines.
At each time step, each machine updates its own velocity and stress
sub-grids. As the finite-difference update of a variable at a given grid
point requires the values of other variables at neighboring grid points
(see Eqs. 3 and 4), values defined at grid points on the domain
boundary must be transferred between adjacent domains at each time
steps. This is depicted in Fig. 3.

Fast interconnects are needed for this memory transfer that occurs
at each time step, otherwise the scaling behavior can become unfavor-
able. For example, Bohlen (2002) observes super-linear scaling for up
to 350 nodes on a cluster with 450 Mb/s interconnects, but only linear
scaling with up to 12 nodes on a cluster with 100 Mb/s interconnects.
When using GPUs, not only transfers are needed between nodes, but
also between the devices and the host. This dramatically worsens
performance. For example, Okamoto (2011) observes a scalability
between N and N2/3. For this reason, we chose to implement two
different parallelism schemes in addition to the inherent OpenCL
parallelization: domain decomposition and shot parallelization.

Nodes of a cluster are first divided into different groups: within
each group, we perform domain decomposition and each group is
assigned a subset of shots. Shot parallelism best corresponds to a task-
parallel decomposition, and is illustrated in Algorithm 1 by the loop on
all the groups of nodes that starts at line 1, and by the loop on all shots
assigned to the groups at line 2. Parallelizing shots does not require
communication between nodes and should show a linear scaling. Let’s
mention that a typical seismic survey involves hundreds if not
thousands of shot points. This should be at least on par with the
number of available nodes on large clusters. On the other hand, domain
decomposition is required to enable computations for models exceed-
ing the memory capacity of a single device. For this level of parallelism,
MPI manages communications between nodes and the OpenCL host
thread manages the local devices. The communications managed by
MPI and OpenCL are illustrated respectively by the loop on all nodes
belonging to the same group starting at line 3 of Algorithm 1 and by the

loop on all devices found on the node starting at line 4.
To further mitigate the communication time required in domain

decomposition, the seismic updates are divided between grid points on
the domain boundary that needs to be transferred and interior grid
points that are only needed locally. This is described in Algorithm 2.
The grid points on the boundary are first updated, which allows
overlapping the communication and the computation of the remaining
grid points, i.e. lines 3 and 4 and lines 7 and 8 of Algorithm 2 are
performed simultaneously for devices supporting overlapped commu-
nications. This is allowed in OpenCL by having two different queues for
each device: one for buffer communication and the other for kernel
calls.

Algorithm 2. Pseudo code showing the overlapping computation and
memory transfer for domain decomposition.

1. while t < Nt

2. Call kernel_updatev on domain boundary
3. Transfer vi in boundary of devices, nodes
4. Call kernel_updatev on domain interior
5. Store S(v)i in seismo at t
6. Call kernel_updates on domain boundary
7. Transfer σij in boundary of devices, nodes
8. Call kernel_updates on domain interior
9. Increment t
10. end while

3.2. GPU kernels

The main elements of the kernels used to update stresses and
velocities are shown in Algorithm 3. For better readability, the
algorithm is simplified and does not include viscoelastic computations
or CPML corrections. Note that the “for” loops in this pseudo-code are
implicitly computed by OpenCL. The most important features of this
algorithm are steps 3 and 4, where seismic variables needed in the
computation of the spatial derivatives are loaded from the global
memory to the local memory. As the computation of the spatial
gradient of adjacent grid elements repeatedly uses the same grid
points, this saves numerous reads from global memory. To be effective,
those reads must be coalesced. This is achieved by setting the local
working size in the z dimension, which is the fast dimension of the
arrays, to a multiple of 32 for NVidias’ GPUs. Hence, seismic variables
are updated in blocks of 32 in the z dimension. In the x and y
dimensions, the size of the local working size does not impact coalesced
memory reading. They are set equal to a magnitude that allows all the
seismic variables needed in the update to fit in the local memory. This
is illustrated in Fig. 4.

Algorithm 3. Pseudo code for the seismic update kernels showing
how local memory is used.

1. for all local_domains in global_domain do
2. for all grid point in local_domain do
3. Load vi (σij) from global to local memory
4. Compute ∂ vi i (∂ σi ij) from local memory
5. Update σij (vi) in global memory
6. end for
7. end for

3.3. Misfit gradient computation

The cross-correlation of the direct and residual fields requires both

Fig. 3. Domain decomposition for three devices for a finite-difference order of 2. Light
gray cells are updated inside the device and transferred to the dark gray cells of the
adjacent device.
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fields to be computed at the same time step (see Eq. (8)). This is
challenging because forward computations are performed from time
zero, whereas adjoint computations are performed from final time.
Several strategies can be employed to achieve this task (see (Dussaud,
et al., 2008; Nguyen and McMechan, 2015) for comparisons between
methods).

1. When propagating the direct field, the whole grid for the particle
velocities and stresses at each time step or a subset of the time steps
can be saved into memory. When the residual field is propagated
from final time, the direct field is read from memory for all grid
points and the scalar product is evaluated iteratively, time step per
time step.

2. In the so-called the backpropagation scheme (Clapp, 2008; Yang,
et al., 2014), only the outside boundary of the grid that is not in the
absorbing layer is saved at each time step. The direct field is
recovered during the residual propagation by propagating back in
time the direct field from the final state, injecting the saved wavefield
on the outside boundary at each time step. As both the forward and
adjoint wavefields are available at the same time step, the scalar
products can be computed directly with Eq. (8).

3. A selected number of frequencies of the direct and residual field can
be stored. This is performed by applying the discrete Fourier
transform incrementally at each time step (Eqs. 9 and 10), as done
by (Sirgue, et al., 2008). The scalar product is evaluated at the end of
the adjoint modeling in the frequency domain with Eq. (9). An
alternative way of computing the chosen frequencies (Furse, 2000)
seems to be advantageous over the discrete Fourier transform, but
has not been tested in this study.

4. In the optimal checkpointing method proposed by (Griewank, 1992;
Griewank and Walther, 2000), and applied by (Symes, 2007), the
whole forward wavefield is stored for a limited number of time steps
or checkpoints. To perform the scalar product, the forward wavefield
is recomputed for each time step during the backpropagation of the

residuals from the nearest checkpoint. For a fixed number of
checkpoints, an optimal distribution that minimizes the number of
forward wavefield that has to be recomputed can be determined. For
this optimal distribution, the number of checkpoints and the number
of recomputed time steps evolve logarithmically with the number of
total time steps. Further improvements of the method have been
proposed by (Anderson, et al., 2012) and by (Komatitsch, et al.,
2016) in the viscoelastic case.

The first option is usually impractical, as it requires a huge amount
of memory even for problems of modest size. In 3D, it requires on the
order of O N N( )t 3 elements to be stored, which becomes quickly
intractable. Let’s mention that the use of compression and subsampling
can be used to mitigate these high memory requirements (Boehm,
et al., 2016; Sun and Fu, 2013). The backpropagation scheme requires
far less memory, on the order O N N( )t 2 in 3D, but doubles the
computation task for the direct field. Also, it is not applicable in the
viscoelastic case. Indeed, in order to back-propagate the wavefield, the
time must be reversed t t→ − and, doing so, the memory variable
differential equation (Eq. 1c) becomes unstable. Hence, when dealing
with viscoelasticity, the frequency scheme and the optimal checkpoint-
ing scheme are the only viable options. The memory requirement of the
frequency scheme grows with the number of computed frequencies on
the order of O N N( )f 3 . However, as is common in FWI, only a selected
number of frequencies can be used (Virieux and Operto, 2009). The
optimal checkpointing method requires O N N( )c 3 where Nc is the
number of checkpoints. Because of the logarithmic relationship be-
tween the number of time steps, the number of checkpoints and the
number of additional computations, the required memory should stay
tractable. For example, for 10 000 time steps, with only 30 buffers, the
computing cost of this option is 3.4 times that of the forward modeling.
In this work, we implemented the backpropagation scheme for elastic
propagation and the frequency scheme using the discrete Fourier
transform for both elastic and viscoelastic propagation. The implemen-
tation of the optimal checkpointing scheme or the hybrid backpropaga-
tion/checkpointing scheme of (Yang, et al., 2016) is left for future
work.

The gradient computation involving the backpropagation of the
direct field is illustrated in Algorithm 4. At each time step of the direct
field propagation, the wavefield value at grid points on the outer edge of
the model is stored. Because of the limited memory capacity of GPUs,
this memory is transferred to the host. As mentioned before, this
communication can be overlapped with other computations with the
use of a second queue for communication. After obtaining the
residuals, the residual wavefield is propagated forward in time using
the same kernel as the direct wavefield. The back-propagation of the
direct wavefield is calculated using the same kernel, the only difference
being the sign of the time step Δt Δt→ − . Also, at each time step, the
stored wavefield on the model edges is injected back. With this scheme,
both the residual and the direct fields are available at each time step
and can be multiplied to perform on the fly the scalar products needed
to compute the gradient.

Algorithm 4. Pseudo code for the backpropagation scheme.

1. while t < Nt

2. Call kernel_updatev
3. Store vi in boundary of model
4. Call kernel_updates
5. Store σij in boundary of model
6. Increment t
7. end while
8. Calculate residuals
9. while t < Nt

10. Call kernel_updatev on ⃖v , vi i

Fig. 4. Exploded view of the local memory containing a seismic variable during update
(Eqs. 1a and 1b), for the 2nd order scheme. White cells are cells being updated and gray
cells are loaded into local memory only to update white cells.
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11. Inject vi in boundary of model
12. Call kernel_updates on ⃖σ , σij ij
13. Inject σij in boundary of model
14. Compute gradient
15. Increment t
16. end while

The frequency scheme is illustrated in Algorithm 5. It first involves
computing the direct wavefield and its discrete Fourier transform on
the fly at each time step, for each desired frequency (Eq. (10)).
Afterward, the residual wavefield is obtained in exactly the same
fashion. At the end, the scalar product needed for the gradients can
be computed with the selected frequencies.

Algorithm 5. Pseudo code for the frequency scheme.

1. while t < Nt

2. Call kernel_updatev for vi
3. Call kernel_updates for σij
4. Call DFT on v , σi ij for freqs
5. Increment t
6. end while
7. Compute residuals
8. while t < Nt

9. Call kernel_updatev for v⃖i
10. Call kernel_updates for σ⃖ij
11. Call DFT on ⃖v⃖ , σi ij for freqs
12. Increment t
13. end while
14. Compute gradients

4. Results and discussion

This section shows several numerical results obtained with SeisCL.
The following tests were chosen to verify the performance of OpenCL in
the context of FWI on heterogeneous clusters containing three different
types of processors: Intel CPUs, Intel Xeon PHI (MIC) and NVidia
GPUs.

4.1. Modeling validation

In order to test the accuracy of our forward/adjoint modeling
algorithm, two synthetic cases are presented. First, the finite-difference
solution of the viscoelastic wave equation is compared to the analytic
solution. The analytic solution for the viscoelastic wave propagation of
a point source derived by Pilant (2012) is used here in the form given
by Gosselin-Cliche and Giroux (2014) for a quality factor profile
corresponding to a single Maxwell body. The source is a Ricker wavelet
with a center frequency of 40 Hz, oriented in the z direction. The
viscoelastic model is homogeneous with Vp=3500 m/s, Vs=2000 m/s,
ρ=2000 kg/m3 with a single Maxwell body. We tested 4 attenuation
levels τ τ= ={0,0.01,0.2,0.4}p s , i.e. Q = {∞, 200,10,5} at the center fre-
quency of 40 Hz. Using a finite-difference stencil of order 4, a 6 m (8.33
points per wavelength) spatial discretization is used to avoid numerical
dispersion with a 0.5 ms time step for numerical stability. Fig. 5 shows
the comparison between the analytic solution and the solution obtained
with SeisCL. The traces represent the particle velocities in the z
direction for an offset of 132 m in the z direction. For the elastic case
(τ=0), the analytical solution is perfectly recovered by SeisCL. Using
higher attenuation levels does, however, introduce some errors in the
solution. This error increases with τ and for an attenuation level of 0.4,
the discrepancy becomes obvious for the offset used herein. It is,
however, the expected drawback of using an explicit time domain
solution and similar time-domain algorithms show the same behavior,

see (Gosselin-Cliche and Giroux, 2014). Also, for reasonable attenua-
tion levels, the errors appear negligible and will not impact FWI results
much. Accuracy could become an issue for very high attenuating media
and long propagation distances.

The second test aims at validating the misfit gradient output of
SeisCL. For this test, a synthetic 2D cross-well tomographic survey is
simulated, where a model perturbation between two wells is to be
imaged. The well separation is 250 m and the source and receiver
spacing are respectively 60 m and 12 m (Fig. 5). Circular perturbations
of a 60 m radius for the five viscoelastic parameters were considered at
five different locations. The same homogeneous model as the first
experiment is used with τ = 0.2 and with perturbations of 5% of the
constant value. Because significant crosstalk can exist between para-
meters, especially between the velocities and the viscous parameters
(Kamei and Pratt, 2013), we computed the gradient for one type of
perturbation at a time. For example, the P-wave velocity gradient is
computed with constant models for all other parameters other than Vp.
This eliminates any crosstalk between parameters and allows a better
appraisal of the match between the gradient update and the given
perturbations. Note that because the goal of the experiment is to test
the validity of the approach, geological plausibility was not considered.
As no analytical solution exists for the gradient, the adjoint state
gradient was compared to the gradient computed by finite-difference.
The finite-difference solution was obtained by perturbing each para-
meter of the grid sequentially by 2%, for all the grid position between
the two wells. The adjoint state gradient was computed with the
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Fig. 5. Comparison between the analytical solution and SeisCL results for different
attenuation levels, from the elastic case (τ=0) to strong viscoelasticity (τ=0.4).
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frequency scheme using all frequencies of the discrete Fourier trans-
form between 0 and 125 Hz.

The results of this second experiment are shown in Fig. 6. In this
figure, each column represents a different perturbed parameter. The
first row shows the perturbation, the second the steepest descent
direction (minus the misfit gradient) obtained by finite-difference and
the third the steepest descent direction given by the adjoint state
model. Note that the gradients were normalized in this figure. As can be
visually appraised, an excellent agreement is obtained between both
methods, for all parameters. Although the inversion has not been
performed here, it should converge to the right solution in the five
different cases, the update correction being already in the right
direction. This is expected considering the small value of the perturba-
tion used in this experiment; the inverse problem is more or less linear
in such circumstances. The good agreement between the finite-differ-
ence and the adjoint state gradients shows that the latter could be used
in any gradient-based inversion approach. However, the adjoint
approach is orders of magnitude faster than the finite-difference
approach: the first grows proportionally to the number of frequencies
(see next section) while the second grows linearly with the number of
parameters. For this particular experiment, the adjoint approach
required minutes to complete whereas the finite-difference approach
required days.

4.2. Performance comparison

The effort required to program with the OpenCL standard would be

vain without a significant gain in the computing performance. In the
following, several tests are presented to measure the performance of
SeisCL. As a measure, one can compute the speedup, defined here as:

T
TSpeedup = .baseline

SeisCL (11)

Different baselines are used depending on the test. In order to show
the OpenCL compatibility of different devices, all tests are performed
on three types of processors: Intel CPUs, Intel Xeon PHI (MIC) and
NVidia GPUs. Unless stated otherwise, the CPU device consists of 2
Intel Xeon E5-2680 v2 processors with 10 cores each at a frequency of
2.8 GHz and with 25 MB of cache. The GPU is an NVidia Tesla K40
with 2880 cores and 12 GB of memory, and the MIC is an Intel Xeon
Phi 5110P.

4.2.1. Speedup using SeisCL over a single threaded CPU
implementation

As a baseline, SOFI2D and SOFI3D, the 2D and 3D implementa-
tions of Bohlen (2002) are used with a single core. This baseline can be
compared to SeisCL as both codes use the same algorithm. It is also
representative of the speed that can be achieved for a FDTD code
written in C, arguably one of the fastest high level languages for the
CPU. In Fig. 7, the speedup is measured as a function of the model size
for the 3D and 2D cases, where the model size is a cube and a square
respectively with edges of N grid points. The speed-up varies signifi-
cantly with the model size. The highest speedups are attained with the
GPU, which ranges between 50 to more than 80 in 3D and between 30

Fig. 6. A cross-well experiment to test the validity of the misfit gradient. The red triangles represent the sources position and the red dots the receiver positions. Each column represents
a different parameter. The first row shows the location of the perturbation, the second row represents the opposite of the misfit gradient obtained by finite-difference and the third row
represents the opposite of the misfit gradient obtained by the adjoint state method.
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and 75 in 2D. Significant speedups are also obtained with CPUs, as
high as 35 times faster. This is higher than the number of cores (20)
available. We make the hypothesis that this is caused by a better cache
usage of the OpenCL implementation, i.e. usage of local memory
increases significantly the cache hits during computation compared
to the C implementation of Bohlen (2002). The 2D implementation
seems less impacted by this phenomenon and speedups are in a more
normal range, between 11 and 25. We also noted that the time stepping
computation can be very slow in the first several hundred time steps for
the C implementation. This is the source of the strong variations in
speedups observed in Fig. 7. Finally, the Xeon Phi speedups are
disappointing compared to their theoretical computing capacity.
However, SeisCL has been optimized for GPUs, not for the Xeon Phi.
Even if we have not tested it, it is possible that with small modifications
of the code, improved performance could be attained. This shows,
however, the limits of device portability with OpenCL: code optimiza-
tion is paramount to achieve high performances and this optimization
can be quite different for different devices.

4.2.2. Performance of the gradient calculation
The next test aims at assessing the performance of the two different

gradient schemes. For this experiment, the baseline is the time
required to perform one forward modeling run, without the gradient

calculations. The computing times are measured for the backpropaga-
tion scheme and the frequency scheme, for model sizes of
100x100x100 and 1000x1000 grid nodes in 3D and 2D respectively.
The results are shown in Fig. 8. For the frequency scheme, the
computing time increases linearly with the number of frequencies.
The cost rises faster in 3D than in 2D, which can be explained by the
higher number of variables needed to be transformed in 3D.
Surprisingly, the computation time for the Xeon PHI seems to increase
much slower than for the CPU or the GPU. It is to be noticed that for
testing purposes, the discrete Fourier transform was computed at every
time step. However, significant savings could be achieved if it was
computed near the Nyquist frequency. Nevertheless, this test shows
that the cost of computing the discrete Fourier transform during time
stepping is not trivial but remains tractable. Finally, the backpropaga-
tion scheme has a cost that is roughly 3 times the cost of a single
forward modeling for all devices. Hence, in the elastic case, the
backpropagation scheme outperforms the frequency scheme no matter
the number of frequencies. It also has the added benefit of containing
all frequencies.

4.2.3. Measure of the cost of using higher order finite-difference
stencils on different devices

The baseline for this test is the computation time of the 2nd order
stencil for each device. The slowdown is used here as a measure, i.e. the
inverse of the speedup. The same spatial and temporal step lengths
were used for each order. As can be seen in Fig. 9, for all three types of
device, the slowdown is quite low and does not exceed 1.5 for the
highest order of 12 considered here, except for the GPU in 3D where it
exceeds 3 for an order of 12. Note that up to the 8th order, the GPU
performance is comparable to the other device types. The higher cost
for the GPU in 3D for orders 10 and 12 is caused by the limited amount
of local memory. Indeed, for those orders, the amount of local memory
required to compute the derivative of a single variable exceeds the
device capacity. In those circumstances, SeisCL turns off the usage of
local memory and uses global memory directly. The abrupt slowdown is
manifest of the importance of using local memory. The reason why
higher order stencils do not affect significantly the computing time of
SeisCL is that it is bandwidth limited: access to the memory takes more
time than the actual computations. As memory access is locally shared,
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the higher number of reads required for higher finite-difference order
does not increase significantly. The impact on computation at each
time step is thus marginal. In most cases, the advantages of using
higher orders outweigh the computational costs, because it allows
reducing the grid size. For example, using a 6th order over a 2nd order
stencil allows reducing the grid point per wavelength from around 22 to
3, i.e. it reduces the number of grid elements by a factor of 400 in 3D.
However, in some situations, for instance in the presence of a free
surface, topography or strong material discontinuities, higher order
stencils introduce inaccuracies (Bohlen and Saenger, 2006; Kristek,
et al., 2002; Robertsson, 1996). Hence, the choice of the order should
be evaluated on a case-by-case basis.

4.2.4. Tests on heterogeneous clusters
To evaluate the scalability of our code over large clusters, a strong

scaling test was performed. Here, strong scaling refers to the variation
of the computational time for a model of fixed sized for an increasing
number of processors. The following results were obtained for a grid
size of 96x96x9000 elements and an increasing number of devices for
the domain decomposition. This test was performed on two different
clusters: Helios of Laval University, Canada and Guillimin from McGill
University, Canada. The Helios nodes contain 8 NVidia K80 GPUs (16
devices). This cluster was used to test strong scaling for GPUs on a
single node of a cluster, which does not involve MPI. Two types of
nodes were used on Guillimin: nodes containing two Intel Xeon X5650
with 6 cores each at 2.66 GHz and 12 MB of cache and nodes
containing 2 NVidia K20 GPUs in addition to the same two Xeon
CPUs. This cluster was used to test strong scaling across several nodes,
which requires MPI communication.

Results are shown in Fig. 10. The best scaling behavior is shown by
the nodes on Guillimin with two GPUs, which is very nearly linear over
the tested number of devices (blue triangles on Fig. 10). Surprisingly,
the scaling is slightly worse for many devices located on the same node
(Helios nodes, red stars in Fig. 10). We interpret this result as being
caused by the increasing burden on the processor when a higher
number of GPUs must be scheduled on the same nodes: at some point,
the CPU becomes too slow to keep all GPUs busy. Compared to
Guillimin nodes using CPUs, Guillimin nodes using GPUs also scale
better. Still, the CPU scaling remains quite favorable and is higher than
N4/5. Those results are better than the results reported by Okamoto

(2011), Rubio, et al. (2014), Weiss and Shragge (2013). We explain this
favorable behavior by the separate computation of grid elements inside
and outside of the communication zone in our code.

The strong scaling tests show that for large models that fit only on
multiple nodes and devices, SeisCL can efficiently parallelize the
computation domains with a minimal performance cost. Still, paralle-
lization over shots should be favored when models fit in the memory of
a single device because no fast interconnects are needed in this
situation, and because SeisCL is somewhat more efficient when
memory usage attains a certain level, as shown in Fig. 7. In short,
having both types of parallelization allows a greater flexibility over the
type of cluster that can be used with SeisCL.

5. Conclusion

In this article, we presented a program called SeisCL for viscoelastic
FWI on heterogeneous clusters. The algorithm solves the viscoelastic
wave equation by the Finite-Difference Time-Domain approach and
uses the adjoint state method to output the gradient of the misfit
function. Two approaches were implemented for the gradient compu-
tation by the adjoint method: the backpropagation approach and the
frequency approach. The backpropagation approach was shown to be
the most efficient in the elastic case, having roughly the cost of 3
forward computations. It is, however, not applicable when viscoelas-
ticity is introduced. The frequency approach has an acceptable cost
when a small number of frequencies is selected, but becomes quite
prohibitive when all frequencies are needed. Future work should focus
on the implementation of the optimal checkpointing strategy, which is
applicable to both elastic and viscoelastic FWI and strikes a balance
between computational costs and memory usage.

It was shown that using OpenCL speeds up the computations
compared to a single-threaded implementation and allows the usage of
different processor architectures. To highlight the code portability,
three types of processors were tested: Intel CPUs, Nvidia GPUs and
Intel Xeon PHI. The best performances were achieved with the GPUs: a
speedup of nearly two orders of magnitude over the single-threaded
code was attained. On the other hand, code optimization was shown to
be suboptimal on the Xeon PHI, which shows that some efforts must
still be spent on device-specific optimization. For the GPU, memory
usage was the main area of code optimization. In particular, the use of
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OpenCL local memory is paramount and coalesced access to global
memory must be embedded in the algorithm.

When using domain decomposition across devices and nodes of a
cluster, overlapping communications and computations allowed hiding
the cost of memory transfers. Domain decomposition parallelization
was shown to be nearly linear on clusters with fast interconnects using
different kinds of processors. Hence, SeisCL can be used to compute
the misfit gradient efficiently for large 3D models on a cluster.
Furthermore, the task-parallel scheme of distributing shots allows
flexibility when the speed of interconnects between the nodes limits the
computational gain. Together, both parallelization schemes allow a
more efficient usage of large cluster resources.

In summary, the very good performance of SeisCL on heteroge-

neous clusters containing different processor architectures, particularly
GPUs, is very promising to speed up full waveform inversion. Presently,
the most efficient devices for SeisCL are GPUs, but this can change in
the future. The open nature and the flexibility of OpenCL will most
probably allow SeisCL to use new hardware developments. SeisCL is
distributed with an open license over Github.
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Apppendix A

This section lists the misfit gradient coefficients. First, some constants are defined:
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The misfit gradient coefficients are given by:
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